【经验】简析Sic MOSFET相对于IGBT器件的三个优势:低导通损耗、低开关损耗、高驱动电压条件下更低导通电阻
ROHM的SCT2080KEHR是1200V,导通电阻是80mΩ,电流40A,封装TO-247-3的车规级Sic MOSFET,驱动电压范围VGSS在 -6V~+22V,驱动范围比较窄。本文以CT2080KEHR为例,对比市场通用的1200V/40A的TO-247-3的IGBT单管,说明Sic MOSFET在导通损耗和开关损耗上更具优势。
1:导通损耗更低
从图1的等效曲线可以看出,在150℃的温度条件下,1200V的IGBT和1200V的Sic MOSFET的导通压降和电流均是成正比关系。但是曲线中15A以内的低电流时,同样的电流条件下Sic MOSFET的导通压降远远低于Si IGBT的。例如当Id=10A时,对应的Sic MOSFET的Vds在1.2V左右,但是对应的Si IGBT的Vds在1.6V左右。Sic MOSFET导通损耗上相对于Si IGBT有25%左右的优势。
图1:Vds和Id的关系曲线
2:更低的开关损耗
从图2和图3的曲线数据可以看出,Si IGBT在关断时有拖尾现象,这种现象会延长关断的时间,根据关断能量E=U*I*t的关系,电流I和时间t越大,关断的损耗就越高。而Sic MOSFET在关断时就没有这种拖尾现象,相比Si IGBT电流I在更短的时间降低到零,同时下降的曲线时间t也相当于Si IGBT的1/4。同样的电压U下,电流I和时间t更小,开关的能量损耗E就会更低。
图2:Si IGBT的开关特性
图3:Sic MOSFET的开关特性
3:高驱动电压下,Sic MSOFET导通电阻更低,相应的导通特性更具优势。
Si IGBT一般是15V的驱动电平为主,从图3中曲线可以看出Sic MOSFET的导通电阻与驱动电压是正反比的关系,驱动电压在18V以上可实现最优的导通损耗。
图3:Vgs和Rdson的关系曲线
SCT2080KEHRC11Z的相关参数:
- |
- +1 赞 0
- 收藏
- 评论 0
本文由Joshua提供,版权归世强硬创平台所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:世强硬创平台”。
相关推荐
【经验】以SIC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略
在SiC MOS应用中,通常在mos关断过程中存在较大的Vds尖峰,主要原因在Turn ON 时流过的电流的能量储存在线路和基板布线的寄生电感中,并与开关元件的寄生电容共振所产生的。本文将以ROHM SiC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略。
【经验】如何通过增加栅极电容的方式减缓SiC MOSFET 的米勒效应
SiC MOSFET 同Si 基MOSFET和IGBT一样,由于存在米勒电容,都会有米勒效应的存在。由于SiC材料所带来的优势,SiC MOSFET可以工作在更高开关频率下,这样就会面临更严峻的误触发现象。所以在驱动电路设计中需要增加相关设计,使之能够较为有效地避免误触发。本文将主要介绍增加栅极电容的方式。
【经验】采用4引脚封装的SiC MOSFET : SCT3xxx xR系列之采用4引脚封装的原因
ROHM最近推出了SiC MOSFET的新系列产品“SCT3xxx xR系列”。SCT3xxx xR系列采用最新的沟槽栅极结构,进一步降低了导通电阻;同时通过采用单独设置栅极驱动器用源极引脚的4引脚封装,改善了开关特性,使开关损耗可以降低35%左右。此次,针对SiC MOSFET采用4引脚封装的原因及其效果等问题,产出了本系列文章,本文是第一篇:采用4引脚封装的原因。
ROHM(罗姆) SiC(碳化硅)MOSFET选型指南(中文)
描述- SiC MOSFET原理上在开关过程中不会产生拖尾尾电流,可高速运行且开关损耗低。低导通电阻和小型芯片尺寸造就较低的电容和栅极电荷。此外,SiC还具有如导通电阻增加量很小的优异的材料属性,并且有比导通电阻可能随着温度的升高而上升2倍以上的硅(Si)器件更优异的封装微型化和节能的优点。
型号- SCT3160KL,SCT4062KR,SCT3030KLHR,SCT4013DE,SCT3080AW7,SCT2450KE,SCT3160KW7,SCT2H12NZ,SCT4062KW7HR,SCT2450KEHR,SCT4013DR,SCT3060ALHR,SCT3040KRHR,SCT3060ARHR,SCT3040KLHR,SCT4036KEHR,SCT4045DRHR,SCT3022KLHR,SCT2160KE,SCT3080KW7,SCT3017ALHR,SCT3022AL,SCT3080ALHR,SCT3060AR,SCT3105KLHR,SCT4036KR,SCT3060AL,SCT4026DEHR,SCT4062KRHR,SCT3040KR,SCT2080KE,SCT3080KR,SCT3105KRHR,SCT3120AL,SCT4013DW7,SCT3030KL,SCT4062KWAHR,SCT4062KE,SCT3080ARHR,SCT4036KW7,SCT2280KEHR,SCT3120ALHR,SCT2280KE,SCT4062KWA,SCT3030AR,SCT3030AL,SCT3030AW7,SCT4036KRHR,SCT4045DEHR,SCT3120AW7,SCT3040KL,SCT3105KW7,SCT2080KEHR,SCT4018KW7,SCT4045DWA,SCT3080KL,SCT3030ALHR,SCT4062KW7,SCT3040KW7,SCT3022ALHR,SCT3030ARHR,SCT4045DW7,SCT3017AL,SCT4036KE,SCT4018KE,SCT4045DE,SCT4026DW7,SCT4062KEHR,SCT3080AR,SCT4026DW7HR,SCT4026DE,SCT4026DWA,SCT3160KLHR,SCT3080AL,SCT4045DW7HR,SCT4045DR,SCT2160KEHR,SCT3022KL,SCT4018KR,SCT4026DR,SCT4045DWAHR,SCT3105KL,SCT3160KW7HR,SCT3105KR,SCT3080KLHR,SCT3060AW7,SCT4026DRHR,SCT3080KRHR,SCT4026DWAHR
ROHM提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型
全球知名半导体制造商ROHM(总部位于日本京都市)开始提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型。该模型可在Altair® US公司开发的电力电子和电机控制用的电路仿真工具PSIM™中使用。设计人员可从ROHM官网下载模型文件,轻松进行系统级评估。这一进展使得在更广泛的产业领域中进行高效设计和评估成为可能,并能进一步推动功率元器件的使用。
SCT2H12NZ 1700V高耐压SiC MOSFET
型号- SCT2280KE,SCT212AF,SCT2450KE,SCT2160KEAHR,SCT2450KEAHR,SCT2H12NZ,SCT3022KL,SCT2080KE,SCT3040KL,SCT3030KL,BD7682FJ-LB-EVK-402,SCH2080KE,SCT2H12NYSCT2750NY,SCT2080KEAHR,SCT2280KEAHR,SCT2160KE
SiC MOSFET 5kW 高效率无风扇逆变电路
描述- 采用了发挥碳化硅(SiC)MOSFET高频特性的Trans-link交错型逆变电路(1)、实现了5kW时的功率转换效率达到99%以上。在该电路拓扑中,平滑电抗器的电感量可以减小。由于电抗器的匝数减少、使铜损大幅度减少实现了高效率。在这份资料中,介绍这个全新的逆变器设计的例子。
型号- PS2501L-1,MCR18ERTJ200,NJM78L05UA,MCR03EZPJ332,MCR03EZPJ334,RK73B1JTTD104J,PC092-01-00,B4B-XH-A,TR10P,DE1E3KX222MA4BN01,RK73B1JTTD472J,GRM188B31H104KA92,RB751S-40,MB3P-90,RK73B2BTTD105J,RK73B2BTTD4R7J,PH-1X10RG2,RK73B1JTTD103J,B5B-PH-K-S,PH-2X09SG,SSM3K318T,GRM1851X1H472JA44,KRB-408,GRM188B11H103KA01,HOT-2608B,ELXZ350ELL101MF15D,TLP700A,SCT3030AL,GRM188R11H104KA93,MCR10ERTJ4R7,TC4069UBF,RK73B1JTTD102J,PC045-00-00,S4B-EH,MOSX1C1R0J,NJM431U,GRM185B31E105MA12,DE1E3KX102MA4BN01,2SCR542P,GRM188R71E104KA01,PH-2X04SG,FHU-2×4SG,MCR10EZPJ105,PH-2X08SG,RK73B1JTTD153J,RK73B1JTTD101J,MCR03EZPJ101,ADR-48-50-0R5YA,MCR03EZPJ102,MCR03EZPJ103,24LC64SN,EG01C,MCR03ERTJ302,CQ-3303,CT-6E-P5KΩ,TR008A,1SS355,NE555D,ECQE6103KF,MCR18ERTJ4R7,ES1A,GRM188B11H102KA01,PC089-01-00-50P,NJM2732M,BFC233920105,MB4P-90,MCR03ERTJ331,B3P-VH,TBD,STR-A6079M,ACPL-C87AT,SCS212AM,MCR18ERTJ1R0,TRANS-LINK,GRM1851X1H222JA44,2SAR542P,MOSX1C334J,MCR03ERTJ202,FHU-2X9SG,VDCT,UDZS5.1B,ECQE6104KF,ELXZ100ELL681MF15D,S3B-EH,RK73B1JTTD271J,2SC3325,PH-1X04SG,MCR03EZPJ152,GRM188R71E105KA12,ELXS451VSN561MA50S,GRM21BR71E105KA99,MCR03ERTJ470,RK73B1JTTD470J,SCT3017AL,RK73B2BTTD563J,RK73B1JTTD000J,TA48M05F,MCR03ERTJ102,MCR03ERTJ103,SBR1U150SA-13,FHU-2X8SG,450MPH105J,UCS2W220MHD
罗姆第4代SiC MOSFET裸芯片批量应用于吉利集团电动汽车品牌“极氪”3种主力车型
日前,搭载了罗姆第4代SiC MOSFET裸芯片的功率模块成功应用于“极氪”电动汽车3种车型的主机逆变器上,有助于延长车辆续航距离以及提高性能。
SiC MOSFET损耗计算方法:通过波形的线性近似分割来计算损耗的方法
本文ROHM将介绍根据在上一篇文章(《SiC MOSFET损耗计算方法:开关波形的测量方法》)中测得的开关波形,使用线性近似法来计算功率损耗的方法。
ROHM 4th Gen SiC MOSFET Simulation Models for PSIM™ Now Available
ROHM has begun offering 4th Gen SiC MOSFET simulation models compatible with PSIM™, a circuit simulator designed for power electronics and motor drive developed by Altair®. Designers can now easily download model files to perform system-level evaluations, allowing for efficient design and evaluation across a wire range of industrial sectors, further promoting the use of power devices.
在EV应用中使用第4代SiC MOSFET的效果:图腾柱PFC实机评估
本文将介绍在相同的BEV电源架构的组成模块之一—OBC的双向图腾柱PFC中使用第4代SiC MOSFET时的实验结果。图腾柱PFC是作为可提高效率的PFC转换器在近年来备受关注的拓扑。另外,为了微电网系统更加稳定,并促进供需平衡,全球范围都在研究V2G(Vehicle To Grid),双向工作也变得越发重要。
SiC MOSFET 的驱动功率一般为多大,比如科锐公司的C3M0065090D的驱动功率要求大吗?一般为多少?如果驱动电路的最大驱动功率为1w,可以成功驱动吗?
根据经验公式 P=f*Q*Uf为开关频率,Q为栅极总电荷,U为栅极开关态压差(如果+15v开通,-5V截止,则U=20V)根据规格书Q=30.4nC,假设f=600kHz,U=20V,则P=0.36W;但是,这只计算了电容效应的功耗,还有有栅极电阻方面的功耗和留有余量。在这种情况下建议选择5倍左右的驱动功率,大约2W较为保险。世强代理的产品中包含多种SiC-mos、MOSFET驱动和配套的电源产品,欢迎参考:【产品】同步整流降压MOSFET驱动器ISL6594A,ISL6594B,支持2MHz的高开关频率【选型】ROHM(罗姆)SIC碳化硅功率元器件选型指南Littelfuse SiC碳化硅MOSFET-交期短·可靠供应,替代替换C2M0080120D,SCT2080KE缺货
【应用】ROHM IGBT单管RGT50NL65DGTL成功助力750W伺服制动设计,650V/25A贴片规格
ROHM 650V/25A的IGBT单管RGT50NL65DGTL采用TO-263L封装,已经成功用于750W伺服制动设计,650V/25A规格,具备低导通特性,导通饱和压降低至1.65V;具备短路能力5μS,耐冲击性更强。
SiC MOSFET:通过波形的线性近似分割来计算损耗的方法
本文的关键要点:可以在线性近似有效范围内对所测得的波形进行分割,并使用示例公式进行损耗的近似计算;MOSFET开关工作时的总功率损耗是开关损耗和导通损耗之和。
电子商城
现货市场
服务
定制液冷板尺寸5mm*5mm~3m*1.8m,厚度2mm-100mm,单相液冷板散热能力最高300W/cm²。
最小起订量: 1片 提交需求>
可根据用户的MOSFET管进行参数检测出具报告,静态参数最大电压:7500V、检测最大电流6000A;动态参数最大电压:3300V、检测最大电流:4500A。该测试标准满足GB、IEC及行业标准等,具备可靠性评估及老化实验能力。
实验室地址: 西安 提交需求>
登录 | 立即注册
提交评论