【经验】EPC分享eGaN FET如何缩小现代电源电路的物理尺寸——以LLC谐振转换器的设计为例
LLC谐振转换器的设计说明了eGaN FET如何缩小现代电源电路的物理尺寸。
计算和电信的快速发展使外部电源供应器向基于48V的电源架构迁移。这种更高电压架构的应用包括需要更高功率密度、更高的功率和更高组件密度的人工智能、5G、大数据和云服务器。由于这些高密度计算板上的空间非常宝贵,因此功率密度非常高。
LLC谐振转换器的整体功耗和效率,包括48V输入和12V输出下的内功耗。该转换器具有97.6%的峰值效率和96.7%的满载效率。
因此,人们对48V至12V板载DC-DC转换器很感兴趣。分布式电源开放标准联盟(DOSA)对1/8砖模块电源48V服务器应用程序设置了大小限制。在这方面,请考虑1kW、4:1转换比、基于eGaN FET的LLC谐振转换器。该转换器达到97.5%的峰值和96.7%的满载效率。它可以超越DOSA标准的限制,通过使用GaN集成实现更高的功率密度。
此应用领域的典型规格适用于在40~60V范围内运行的1kW负载功率48~12V转换器。转换器设计必须适合58.4×22.9×10mm的体积,其尺寸类似于DOSA 1/8砖模块电源,最大允许气流限制为400LFM。此外,最终模块必须配备用于水平或垂直安装的连接销。最后,输入和输出不需要隔离,这简化了拓扑和设计。
设计概览
在此设计中,全桥初级侧配置为谐振回路电路生成脉冲输入电压。谐振回路由一个谐振电容与一个谐振电感串联组成,谐振电感采用变压器漏电感。
该设计使用一个4:1匝数比的高频平面变压器,设计为矩阵变压器,由两个串联的2:1:1连接部分组成,缠绕在单个双柱铁芯上。变压器磁化电感结合预定的死区时间设置用于在初级侧FET上建立零电压开关(ZVS)。开关Q1/Q4和Q2/Q3以接近50%的占空比和180°的相位差切换。次级侧使用两个平行的中心抽头半桥臂,以及用于输出的同步整流器FET。这种同步整流方案降低了高负载电流下的次级侧传导损耗。
eGaN FET非常适合软开关LLC谐振转换器。与类似额定值的硅MOSFET相比,其较低的栅极电荷(QG)和5V栅极操作带来更低的栅极功耗。此外,GaN FET的输出电容低得多,因此实现ZVS所需的能量也少得多。较低的输出电容将减少死区时间并提高有效功率传输时间,或者减少所需的磁化电流、循环能量和传导损耗。最后,eGaN FET比老化的MOSFET同类产品小三到五倍。
该设计将100V、3.2mΩ EPC2218和40V、1.5mΩ EPC2024分别用于初级和次级侧功率器件。两种eGaN FET均可在高达150℃的结温下运行。GaN FET的小外形尺寸使其可以在同步整流器的有限1/8功率砖模块尺寸中安装8个FET。
该设计还包括板载内部电源、数字控制器以及输入和输出电压检测。为了控制功率级,Microchip的dsPIC控制器(dsPIC33CK32MP102-I/2N)生成高分辨率PWM信号。板载内部电源产生栅极驱动器所需的5V电压和控制器所需的3.3V电压。
为1kW转换器设计了定制形状的散热器和用于EPC9149电路板顶侧和底侧的翅片散热器的组合。
定制形状的散热器和用于EPC9149电路板顶侧和底侧的翅片散热器的组合被设计为添加到1kW转换器中。铜质散热器位于初级侧和次级侧FET的顶部,以将热量散布到外部结构。铜质散热器包括轮廓特征,允许散热器的部件搁置在PCB上,以促进冷却、机械稳定性并定义散热器和FET顶面之间的正确间距。
第一种高性能热界面材料(TIM)——例如具有17.8W/m-K高导热率的T-global A1780——在组件和散热器的金属表面之间提供绝缘和高导热性。2:1的压缩比可提供足够的力以获得最佳的热性能,但压缩率不会太大,不会对任何组件产生机械应力。TIM还为散热器接地提供隔离。第二种热界面材料——TG-A6200,同样来自T-Global,其热导率为6.2W/m-K——将散热器连接到散热器。板上的机械螺钉将整个机械结构固定到位。
将EPC9149 1kW、4:1比率基于GaNFET的LLC谐振转换器模块固定在主板上进行评估。主要输入和输出连接、测量端口、大容量输入和输出电容器、USB和通信端口都位于主板上。eGaN FET的低栅极电容、输出电荷和导通电阻以及小尺寸是在功率密度超过1227W/in3时实现高效率的关键。
EPC915948V至12V双向LLC转换器的分解图。在这个3D组件中,变压器位于所有PCB组件的顶部。控制器和偏置电源夹在变压器和基板PCB之间。最后,使用板上的齿形连接进行连接的边缘铜排将整个结构连接在一起。升级的FET、改进的变压器设计和3D组装使该转换器的功率密度达到5130W/in3。
EPC9149是最先进的48至12V板载DC-DC转换器之一。有一些方法可以进一步提高功率密度。首先,设计的长宽比被放弃,取而代之的是方形格式,这使得变压器的设计有了显著的改进。第二个改进是由3D组装方法驱动的,其中变压器与功率转换器级分离。这种方法允许以较少的折中来改进两种设计。
下一个改进是升级到下一代eGaN FETs。对于后续设计,EPC9149上使用的40V 1.5mΩ器件升级为40V 1mΩ器件。这些改进的结合带来5130W/in3的功率密度,是一个巨大的飞跃!
GaN集成
2014年,EPC设计了第一个GaN集成电路——单片半桥。这种集成的优点包括减小尺寸和成本,并且由于两个晶体管的紧密耦合,减小了寄生共源电感。
2019年初,驱动器功能和单芯片半桥与电平转换器、同步升压电路、保护和输入逻辑一起合并到单个GaN硅衬底上。这款完整的EPC2152电子功率级可以在多兆赫频率下驱动,并由一个简单的低端CMOS IC控制。只需增加几个无源元件,就可以成为一个完整的DC-DC稳压调节器。该调节器比分立器件小35%,具有一半的元件,效率更高。在未来几年,将会有完整的片上系统设计,包括最先进的DC-DC转换器所需的所有主要功能。
这种集成对48–12V板载DC-DC转换器的影响将是巨大的。在初级侧实现eGaN功率级集成电路,在次级侧实现同步整流集成电路,可以使GaN电路使用的面积增加一倍。这种集成大大减少并将最终消除内务电路和控制器。据估计,由于氮化镓和外围元件造成的损耗可以减半,从而使功率密度额外提高50%。
功率密度越来越高的趋势没有减弱。eGaN设备提供了一种实现当今可能的最大功率密度的方法,下一代设备和集成解决方案将取得更大的进步。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由海底沉心翻译自EPC官网,版权归世强硬创平台所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:世强硬创平台”。
相关推荐
How2GaN | 如何设计具有最佳布局的eGaN® FET功率级
eGaN FET的开关速度比硅基MOSFET更快,因此需要更仔细地考虑印刷电路板(PCB)布局设计以最小化寄生电感。寄生电感会导致过冲电压更高,同时减慢开关速度。本篇笔记将会探讨使用eGaN FET设计最佳功率级布局的关键步骤,来避免上述不良影响并最大化转换器性能。
设计经验 发布时间 : 2024-10-24
How to Design a 12V-to-60V Boost Converter with Low Temperature Rise Using eGaN FETs
This Talk EPC will examine the design of a 12V to 60V, 50W DC/DC power module with low temperature rise using eGaN FETs in the simple and low-cost synchronous boost topology.
设计经验 发布时间 : 2021-11-01
【经验】EPC eGaN FET和eGaN IC PCB封装设计指南
一个良好的PCB封装设计对于GaN器件的一致性和可靠性是很重要的。本文是根据数据手册为EPC器件设计正确封装的指导原则——以EPC2016C和EPC2045为例,分别从LGA和BGA封装来完成介绍。
设计经验 发布时间 : 2020-09-23
EPC(宜普)eGaN® 氮化镓晶体管(GaN FET)和集成电路及开发板/演示板/评估套件选型指南
目录- eGaN FETs and ICs eGaN® Integrated Circuits Half-Bridge Development Boards DrGaN DC-DC Conversion Lidar/Motor Drive AC/DC Conversion
型号- EPC2212,EPC2214,EPC2059,EPC2216,EPC2215,EPC2218,EPC2016C,EPC2050,EPC2052,EPC2051,EPC2054,EPC2053,EPC2055,EPC9086,EPC2218A,EPC90153,EPC9087,EPC90154,EPC2069,EPC2102,EPC2101,EPC2104,EPC2103,EPC2106,EPC2105,EPC2107,EPC9018,EPC2065,EPC90151,EPC90152,EPC21702,EPC2100,EPC2067,EPC2221,EPC21701,EPC2066,EPC90150,EPC9097,EPC90145,EPC90142,EPC9098,EPC90143,EPC9099,EPC9092,EPC90148,EPC90149,EPC90146,EPC9094,EPC90147,EPC2219,EPC9091,EPC2619,EPC2036,EPC2035,EPC2038,EPC2037,EPC2014C,EPC2039,EPC9507,EPC2030,EPC9067,EPC2032,EPC2031,EPC9068,EPC2152,EPC2033,EPC9063,EPC9186,EPC9066,EPC8010,EPC9180,EPC2204A,EPC9181,EPC9061,EPC2308,EPC2307,EPC9005C,UP1966E,EPC2203,EPC9004C,EPC2202,EPC2204,EPC2015C,EPC2207,EPC2206,EPC2040,EPC2045,EPC2044,EPC9194,EPC2012C,EPC2019,EPC9049,EPC9203,EPC9204,EPC9205,EPC2252,EPC9166,EPC9167,EPC9047,EPC9201,EPC9041,EPC9162,EPC9163,EPC9165,EPC7020,EPC9160,EPC9040,EPC2024,EPC8009,EPC2302,EPC2001C,EPC2029,EPC2304,EPC2306,EPC2305,EPC8002,EPC2021,EPC9177,EPC2020,EPC9057,EPC9167HC,EPC2023,EPC9179,EPC9058,EPC8004,EPC2022,EPC9059,EPC9173,EPC9174,EPC9055,EPC9176,EPC9170,EPC9050,EPC9171,EPC9172,EPC2010C,EPC2034C,EPC7007,EPC7002,EPC9148,EPC2071,EPC7001,EPC23101,EPC23102,EPC23103,EPC9144,EPC90140,EPC23104,EPC2111,EPC7004,EPC2110,EPC7003,EPC90133,EPC90132,EPC9022,EPC9143,EPC90137,EPC90138,EPC90135,EPC90139,EPC7019,EPC7018,EPC9038,EPC9159,EPC9039,EPC2007C,EPC21603,EPC9156,EPC9036,EPC9157,EPC9037,EPC2088,EPC7014,EPC21601,EPC9158,EPC90122,EPC9151,EPC9031,EPC90123,EPC90120,EPC9153,EPC9033,EPC90121,EPC9154,EPC90124,EPC9150,EPC90128
Enhancement-Mode Gallium Nitride Technology
型号- EPC2212,N/A,EPC2214,EPC2059,EPC2216,EPC2215,EPC2218,EPC2050,EPC9126,EPC2052,EPC2051,EPC2054,EPC2053,EPC2055,EPC9086,EPC2218A,EPC90153,EPC2102,EPC2101,EPC2104,EPC2103,EPC2106,EPC2105,EPC2107,EPC2065,EPC90151,EPC90152,EPC2100,EPC2067,EPC21701,EPC2221,EPC2066,EPC90150,EPC9097,EPC90145,EPC90142,EPC9098,EPC90143,EPC9099,EPC9092,EPC90148,EPC90149,EPC90146,EPC9094,EPC90147,EPC2219,EPC9091,EPC2619,EPC2036,EPC2035,EPC2038,EPC2037,EPC2014C,EPC9507,EPC2031,EPC2152,EPC9063,EPC9126HC,EPC2204A,EPC9061,EPC2308,EPC2307,EPC9005C,UP1966E,EPC2203,EPC9004C,EPC2204,EPC2207,EPC2206,EPC2044,EPC2012C,EPC9049,EPC2252,EPC9166,EPC9167,EPC9041,EPC9162,EPC9165,EPC7020,EPC9160,EPC9040,EPC2302,EPC2001C,EPC2304,EPC2306,EPC2305,EPC8002,EPC9177,EPC9167HC,EPC9179,EPC9173,EPC9174,EPC9055,EPC9050,EPC9171,EPC9172,EPC7007,EPC2034C,EPC7002,EPC9148,EPC23101,EPC2071,EPC7001,EPC23102,EPC23103,EPC9144,EPC23104,EPC90140,EPC2111,EPC7004,EPC7003,EPC90132,EPC9022,EPC90137,EPC90138,EPC90135,EPC7019,EPC7018,EPC9038,EPC9039,EPC21603,EPC9156,EPC9036,EPC9157,EPC9037,EPC21601,EPC2088,EPC7014,EPC90122,EPC90123,EPC90120,EPC9153,EPC90121,EPC9154,EPC90124,EPC9150,EPC90128
BRC Solar Selects EPC 100V eGaN FETs for Next Generation Solar Optimizer
Designing EPC‘s EPC2218 100V FETs into BRC Solar GmbH‘s next generation M500/14 power optimizer has enabled a higher current density due to the low power dissipation and the small size of the GaN FET making the critical load circuit more compact.
应用方案 发布时间 : 2022-08-26
【应用】eGaN FET EPC2051助力激光雷达发射端高功率纳秒级别脉冲设计
在激光雷达的发射链路中,为实现雷达高分辨率的设计,需产生高功率、纳秒级别的激光脉冲。要达到这样的设计要求,普通MOS不能满足要求,需要采用GaN 搭配高功率Laser器件进行实现。EPC2051是EPC公司生产的氮化镓场效应晶体管(eGaN FET),已经成功的应用在激光雷达上。
应用方案 发布时间 : 2020-04-29
【应用】如何使用200V eGaN FET设计2.5kW高效FCML图腾柱无桥PFC整流器
本文介绍了一种适用于数据中心应用的高效,高功率密度,2.5kW的基于eGaN FET的飞跨电容4电平图腾柱无桥整流器。采用EPC旗下200V/8mΩ的EPC2215用于高频支路,其转换器在900W至2.5kW的效率超过99%,在1.4kW时的峰值为99.25%。
应用方案 发布时间 : 2020-11-27
eGaN FETs Are Low EMI Solutions!
GaN FETs can switch significantly faster than Si MOSFETs causing many system designers to ask − how does higher switching speeds impact EMI? In this blog, EPC discusses simple mitigation techniques for consideration when designing switching converter systems using eGaN® FETs and will show why GaN FETs generate less EMI than MOSFETs, despite their fast-switching speeds.
新产品 发布时间 : 2020-08-15
电子商城
服务
支持 3Hz ~ 26.5GHz射频信号中心频率测试;9kHz ~ 3GHz频率范围内Wi-SUN、lora、zigbee、ble和Sub-G 灵敏度测量与测试,天线阻抗测量与匹配电路调试服务。支持到场/视频直播测试,资深专家全程指导。
实验室地址: 深圳/苏州 提交需求>
测试范围:扬兴晶振全系列晶体,通过对晶体回路匹配分析,调整频率、驱动功率和起振能力,解决频偏、不起振、干扰、频率错误等问题。技术专家免费分析,测完如有问题,会进一步晶振烧录/修改电路。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论