地平线Sparse4D系列算法:迈向长时序稀疏化3D目标检测的新实践

2023-07-26 地平线HorizonRobotics公众号
软件算法,Sparse4D,地平线 软件算法,Sparse4D,地平线 软件算法,Sparse4D,地平线 软件算法,Sparse4D,地平线

迈向长时序稀疏化3D目标检测的新实践时序多视角融合感知技术是自动驾驶系统重要的研究方向之一。BEV(Bird's Eye View,鸟瞰图)范式算法的迅猛发展的同时,其也逐渐暴露出来一些不足之处,如感知范围/精度/计算效率难平衡等。相比于BEV范式稀疏范式的感知方案在2D->3D 转化效率,远距离感知等方面具备一定的优势。地平线近期发表了关于稀疏感知方案的系列工作:Sparse4D v1 &v2,从Query构建方式、特征采样与融合方式、时序融合方式等多个方面提升了模型的性能和效率,并在nuScenes数据集上超过了VideoBEV,Solofusion, StreamPETR等最新方法的指标。


在自动驾驶视觉感知系统中,为了获得环绕车辆范围的感知结果,通常需要融合多摄像头的感知结果。比较早期的感知架构中,通常采用后融合的范式,即先获得每个摄像头的感知结果,再进行结果层面的融合。后融合范式主要的问题在于难以处理跨摄像头的目标(如大卡车),同时后处理的负担也比较大。而目前更加主流的感知架构则是选择在特征层面进行多摄像头融合。其中比较有代表性的路线就是这两年很火的BEV方法,继Tesla Open AI Day公布其BEV感知算法之后,相关研究层出不穷,感知效果取得了显著提升,BEV也几乎成为了多传感器特征融合的代名词。但是,随着大家对BEV研究和部署的深入,BEV范式也逐渐暴露出来了一些缺陷:


• 感知范围、感知精度、计算效率难平衡

从图像空间到BEV空间的转换,是稠密特征到稠密特征的重新排列组合,计算量比较大,与图像尺寸以及BEV 特征图尺寸成正相关。在大家常用的nuScenes 数据中,感知范围通常是长宽 [-50m, +50m] 的方形区域,然而在实际场景中,我们通常需要达到单向100m,甚至200m的感知距离。若要保持BEV Grid 的分辨率不变,则需要大大增加BEV 特征图的尺寸,从而使得端上计算负担和带宽负担都过重;若保持BEV特征图的尺寸不变,则需要使用更粗的BEV Grid,感知精度就会下降。因此,在车端有限的算力条件下,BEV 方案通常难以实现远距离感知和高分辨率特征的平衡;


• 无法直接完成图像域的2D感知任务

BEV 空间可以看作是压缩了高度信息的3D空间,这使得BEV范式的方法难以直接完成2D相关的任务,如标志牌和红绿灯检测等,感知系统中仍然要保留图像域的感知模型。


实际上,我们感兴趣的目标(如动态目标和车道线)在空间中的分布通常很稀疏,BEV范式中有大量的计算都被浪费了。因此,基于BEV的稠密融合算法或许并不是最优的多摄融合感知框架。同时特征级的多摄融合也并不等价于BEV。这两年,PETR系列(PETR, PETR-v2, StreamPETR) 也取得了卓越的性能,并且其输出空间是稀疏的。在PETR系列方法中,对于每个instance feature,采用global cross attention来实现多视角的特征融合。由于融合模块计算复杂度仍与特征图尺寸相关,因此其仍然属于稠密算法的范畴,对高分辨率的图像特征输入不够友好。


因此,我们希望实现一个高性能高效率的长时序纯稀疏融合感知算法,一方面能加速2D->3D 的转换效率,另外一方面在图像空间直接捕获目标跨摄像头的关联关系更加容易,因为在2D->BEV的环节不可避免存在大量信息丢失。这条技术路线代表性的方法是基于deformable attention 的DETR3D算法。然而从开源数据集指标来看,DETR3D的性能距离其他稠密类型的算法存在较大差距。为了Make 纯稀疏感知 Great Again,我们提出了Sparse4D及其进化版本Sparse4D v2,从Query构建方式、特征采样方式、特征融合方式、时序融合方式等多个方面提升了模型的效果。当前,Sparse4D v2 在nuScenes detection 3D排行榜来看,达到了SOTA的效果,超越了包括SOLOFusion、BEVFormer v2和StreamPETR在内的一众最新方法,并且在推理效率上也具备显著优势。本文主要介绍了Sparse4D 和 Sparse4D v2 方案的细节实践。


Sparse4D:纯稀疏感知方案的全面改进

首先,我们先简单回顾一下DETR3D算法(图1)。DETR3D 算法可以概括为如下几个步骤:

1. 多尺度特征提取:对于多摄像头图像,采用ResNet + FPN 提取图像的多尺度特征

2. Query 初始化:初始化若干Object Queries(以特征编码的形式)

3.Query 特征更新:基于Query 特征,采用一个MLP Decoder 获得其对应的3D 空间参考点坐标,将这个点通过相机内外参投影到图像平面上,并采样多尺度特征,最后融合这些采样特征来更新Query 特征

4. 预测与loss:基于多轮更新后的Query 特征,预测每个Query 对应的bounding box,并通过Bipartite 匹配的方式与真值进行匹配并计算损失函数


DETR3D 搭建了纯稀疏感知的基本框架,即稀疏Query + 稀疏特征采样的范式,但存在一些不足:

• 每个Query 仅对应一个Reference Point,不能够有效采样目标的特征,特别对于较大的目标

• 从Learnable Query 来decode 获得Reference Point 的方式,并不能非常有效的定位roi 区域,且会存在退化解,多模式等诸多的问题。这个问题在Anchor-DETR和 DAB-DETR等方法中都有过讨论

• 不支持对于时序信息的融合


由于上述的这些原因,DETR3D 网络整体的学习能力偏弱,指标在当前显著弱于BEV 范式的方法。在Sparse4D-v1 中,我们主要通过instance 构建方式,特征采样、特征融合和时序融合等方面改进了现有的框架。


Sparse4D 算法框架

如图2所示,Sparse4D 也采用了Encoder-Decoder 结构。其中Encoder包括image backbone和neck,用于对多视角图像进行特征提取,得到多视角多尺度特征图。同时,我们会cache 多历史帧的图像特征,用于在decoder 中提取时序特征;Decoder为多层级联形式,输入时序多尺度图像特征图和初始化instance,输出精细化后的instance,每层decoder包含self-attention、deformable aggregation和refine module三个主要部分。


学习2D检测领域DETR改进的经验,我们也重新引入了Anchor的使用,并将待感知的目标定义为instance,每个instance主要由两个部分构成:


1. Instance feature  F:目标的高维特征,在decoder 中不断由来自于图像特征的采样特征所更新;


2. 3D Anchor A :目标结构化的状态信息,比如3D检测中的目标3D框(x, y, z, w, l, h, yaw, vx, vy);我们通过kmeans 算法来对anchor 的中心点分布进行初始化;同时,在网络中我们会基于一个MLP网络来对anchor的结构化状态进行高维空间映射得到 Anchor Embed  E,并与instance feature 相融合。


基于以上定义,我们可以初始化一系列instance,经过每一层decoder都会对instance 进行调整,包括instance feature的更新,和anchor的refine。基于每个instance 最终预测的bounding box,Sparse4D 中同样通过Bipartite 匹配的方式与真值进行匹配并计算损失函数。


Deformable 4D Aggregation 模块

在Sparse4D 的decoder 中,最重要的是Deformable 4D Aggreagation 模块。这个模块主要负责instance 与时序图像特征之间的交互,如图3所示,主要包括三个步骤:


1. 4D 关键点生成

首先,基于每个instance 的3D anchor信息, 我们可以生成一系列3D关键点,分为固定关键点和可学习关键点。我们将固定关键点设置为anchor box的各面中心点及其立体中心点,可学习关键点坐标通过instance feature接一层全连接网络得到。在Sparse4D 中,我们采用了7个固定关键点 + 6个可学习关键点的配置。


然后,我们结合instance 自身的速度信息以及自车的速度信息,对这些3D关键点进行运动补偿,获得其在历史时刻中的位置。结合当前帧和历史帧的3D关键点,我们获得了每个instance 的4D 关键点。


2. 4D 特征采样

在获得每个instance 在当前帧和历史帧的3D关键点后,我们根据相机的内外参将其投影到对应的多视角多尺度特征图上进行双线性插值采样。从而得到Multi-Keypoint,Multi-Timestamp, Multi-Scale, Multi-View 的特征表示。


3. 层级化特征融合

在采样得到多层级的特征表示后,需要进行层级化的特征融合,我们分为了三层:


• Fuse Multi-Scale/View:对于一个关键点在不同特征尺度和视角上的投影,我们采用了加权求和的方式,权重系数通过将instance feature和anchor embed输入至全连接网络中得到


• Fuse Multi-Timestamp:对于时序特征,我们采用了简单的recurrent策略(concat + linear)来融合


• Fuse Multi-Keypoint:最后,我们采用求和的方式融合同一个instance 不同keypoint 的特征


实验验证

我们在nuScenes 数据集上对Sparse4D 方法展开了很多实验验证,这里列举几个主要的实验。


1. 运动补偿Sparse4D针对自车运动和instance运动都进行了补偿。目前,大多数算法仅显式考虑了自车运动。我们通过实验分析了运动补偿的作用,如表1所示。对于NDS指标来说,自车运动和他车运动分别带来了6.4%和0.7%的提升,他车运动补偿对检测精度无提升,但是对速度估计精度的提升非常显著(mAVE从0.398降低至0.329)。

2. 多层次特征融合在deformable aggregation中,我们需要对多尺度、多视角和多关键点的特征进行融合。为了分析各个层级融合的重要程度,我们分别将各层的加权方式改为直接求和,可以看到多尺度的影响小于多视角,而多关键点的融合最为重要。此外,将三个层级的融合全部改为求和的形式,模型将难以收敛,指标也会显著降低。

3. 采样时序融合帧数:Spase4D v1中,采用多帧采样的方式实现时序融合,其中采样帧数对感知性能的影响显著。我们将帧数从0逐步增加至10,感知性能一直在稳步提升,说明长时序融合对检测性能有很大帮助。但是由于显存限制,我们仅验证到了10帧。

4. 效率与指标分析:如下表所示,在单帧配置下,我们的方法速度与DETR3D持平,且指标显著优于DETR3D。但在时序配置下,Sparse4D的效率出现了显著的下降。这是因为对于每一帧的检测,我们都需要进行当前帧和历史多帧的特征采样和特征融合。这里包含了很多冗余的计算,使得多帧效率显著低于单帧效率。针对这个问题,我们在最近对时序策略进行了优化,提出了Sparse4D-v2 方案,使得其时序推理效率和单帧推理基本一致。

Sparse4D-v2:Recurrent 时序方案 & 进一步效率优化

为了避免多帧采样,进而提升时序特征融合的效率,我们在Sparse4D v2中采用了recurrent的方式来实现时序信息的传递。具体而言,如下图所示,Sparse4D v2中以instance作为时序信息传递的媒介。此外,我们还提出了更高效的Deformable Aggregation 模块,并引入了辅助训练loss。

基于稀疏实例的Recurrent 时序方案

在Sparse4D-v2中,我们将decoder分为单帧层和时序层。单帧层以新初始化的instance作为输入,输出一部分高置信度的instance至时序层;时序层的instance除了来自于单帧层的输出以外,还来自于历史帧(上一帧)。我们将历史帧的instance投影至当前帧,其中,instance feature保持不变,anchor box通过自车运动和目标速度投影至当前帧,anchor embed通过对投影后的anchor进行编码得到,如公式1。


公式1 instance时序转换

其中投影公式与anchor定义相关,对于3D 检测任务,我们使用的投影公式如公式2。

近期效果很好的方法StreamPETR也采用了稀疏的Recurrent 时序框架,Sparse4D v2与其的区别主要在于:


• Instance 表示方式:PETR系列中,query instance 采用的是 “Anchor Point -> Query 特征”的方式。即将均匀分布在3D 空间中的anchor point(learnable)用MLP编码成Query 特征。比起Sparse4D instance 中显式分离feature (纹理语义信息) 和3D anchor(几何运动信息) 的方式,PETR的instance 表示方式更加隐式一些。我们认为feature + anchor box的显式instance表示方式,在稀疏3D检测任务中更加简洁有效,也更易于训练;


• 时序转换方式:与instance 表示方法相对应的是稀疏Reccurent 的方式。StreamPETR 中,采用了隐式的query时序转换方式,即把velocity、ego pose、timestamp都编码成特征,然后再和query feature做一些乘加操作;Sparse4d-V2 则采用了显式的时序转换方式,对于历史帧的instance,直接将其3D anchor基于自车和instance 运动投影到当前帧,而保持其instance feature不变;


• 历史帧数量:StreamPETR 中 cache了历史N帧的query,再与当前帧进行attention。Sparse4d-v2 则只cache了上一帧的query。当然,StreamPETR 也可以只cache 一帧,只是效果会略有下降。在实际的业务实践中,较少的历史帧cache 有助于减少端上的带宽占用,进一步提升系统整体性能。


Efficient Deformable Aggregation


此外,在Sparse4D v2中,我们还对deformable aggregation模块进行了底层的分析和优化,让其并行计算效率显著提升,显存占用大幅降低。基于pytorch op组合的Basic Deformable Aggregation 计算逻辑实现如下图所示:

可以发现其会生成多个中间变量,需要对显存进行多次访问和存储,降低了推理速度,且中间变量 f 尺寸较大,从而导致显存占用量显著增加,并且反向传播过程中的显存消耗会进一步提升。


为了提升该op的计算效率,降低显存占用,我们将上述实现中的双线性特征插值和加权求和融合为一个op,如下图所示,我们称之为Efficient Deformable Aggregation(EDA)。EDA的关键在于将“先采样所有特征再融合”的方式变成了“并行地边采样边融合”,其允许在关键点 K维度和特征C维度上实现完全的并行化,每个线程的计算复杂度仅与相机数量和特征尺度数量相关: Ncam x S 。此外,在某些场景中,3D空间中的一个点最多被投影到两个视图,使得计算复杂度可以进一步降低至2 x S  。EDA可以作为一种基础性的算子操作,可以适用于需要多图像和多尺度融合的各种应用。

我们在3090上对EDA模块进行了性能测试。EDA对显存占用和推理速度都有很大的优化效果。加上EDA之后,Sparse4D v2在nuScenes单次实验训练时间只需要14.5小时(8 GPUs),推理速度可达20.3FPS,且batch size=1时训练显存仅为3100M。

相机编码的加入 & 辅助训练任务

为了提高模型对相机内外参泛化性,我们在Sparse4D v2中加入了内外参的编码,将相机投影矩阵通过全连接网络映射到高维特征空间得到camera embed。在计算deformable aggregation中的attention weights W 时,我们不仅考虑instance feature和anchor embed,还加上了camera embed。

在实验中,我们发现基于稀疏的方法在早期训练阶段缺乏足够的收敛能力和速度。为了缓解这一问题,我们还引入了以点云为监督的多尺度密集深度估计方法作为辅助训练任务。而在推理过程中,这个分支网络将不会被激活,不影响推理效率。


实验验证

1. Ablation Study


我们首先基于Resnet50 + 256x704 分辨率的配置展开了消融实验。如下表所示:


• 对比Exp1 和Exp5可以看出,采用recurrent instance的形式来实现长时序融合,相比单帧提升非常大;


• 对比Exp4 和Exp5可以看出,深度监督模块,有效降低了Sparse4D-V2的收敛难度,如果去掉该模块,模型训练过程会出现梯度崩溃的现象,从而使得mAP降低了8.5%。(在不具备深度监督条件的情况下,也可以考虑使用2D 的检测head 作为辅助loss,如FCOS Head,YoloX等);


• 对比Exp2 和Exp3可以看出,单帧层 + 时序层的组合方式比起只使用时序层的效果要好很多;


• 对比Exp3 和Exp5可以看出,相机参数编码也带来了可观的提升,mAP和NDSf分别提升了2.0%和1.5%。

此外,Exp1 (单帧)在3090 上的推理速度为21.0 FPS,Exp5(时序)的推理速度则为20.3 FPS。可以看出,在recurrent 时序融合框架下,其推理速度和单帧推理基本一致,增加了少量历史instance 映射的耗时。


2. Compare with SOTA

我们先在nuScenes validation数据集上进行了对比,可以无论是在低分辨率+ResNet50还是高分辨率+ResNet101的配置下,Sparse4D v2都取得了SOTA的指标,超过了SOLOFusion、VideoBEV和StreamPETR等算法。


从推理速度来看,在256X704的图像分辨率下,Sparse4Dv2超过了LSS-Based算法BEVPoolv2,但是低于StreamPETR。但是当图像分辨率提升至512X1408,Sparse4Dv2的推理速度会反超StreamPETR。这主要是因为在低分辨率下直接做global attention的代价较低,但随着特征图尺寸的上升其效率显著下降。而Sparse4D head理论计算量则和特征图尺寸无关,这也展示了纯稀疏范式算法在效率上的优势。实际测定中,当图像分辨率从256x704 提升到512x1408时,Sparse4Dv2 的decoder 部分耗时仅增加15%(从高分辨率特征上进行grid sample,会比从低分辨率特征上进行grid sample 略慢一点)。

在nuScenes test数据集上,Sparse4Dv2同样获得了SOTA的指标,超过了所有BEV-based算法,同时也比目前SOTA的StreamPETR高0.2NDS。


总结与展望

总的来说,在长时序稀疏化3D 目标检测的一路探索中,我们主要有如下的收获:


1. 显式的稀疏实例表示方式:将待检测的instance 表示为3D anchor 和 instance feature,并不断进行迭代更新来获得检测结果是一种简洁、有效的方式。同时,这种方式也更容易进行时序的运动补偿;


2. 高效的Deformable Aggregation 算子:我们提出了针对多视角/多尺度图像特征 + 多关键点的层级化特征采样与融合策略,并进行了大幅的效率优化,使我们能高效获得高质量的特征表示。同时在稀疏化的形式下,decoder 部分的计算量和计算延时受输入图像分辨率的影响不大,能更好处理高分辨率输入;


3. Recurrent 的时序稀疏融合框架:基于稀疏实例的时序recurrent 融合框架,使得时序模型基本上具备与单帧模型相同的推理速度,同时在帧间只需要占用少量的带宽(比起bev 的时序方案)。这样轻量且有效的时序方案很适合在真实的车端场景处理多摄视频流数据。


基于稀疏范式的感知算法仍然有很多未解决的问题,也具有很大的发展空间。首先,如何将Sparse的框架应用到更广泛的感知任务上是下一步需要探索的,例如道路元素的感知任务(HD map construction、 topology等)、预测规控任务(trajectory prediction、end-to-end planning等);其次,我们需要对稀疏感知算法进行更充足的验证,保证其具备量产能力,例如远距离检测效果、相机内外参泛化能力及多模态融合感知性能等。我们希望Sparse4D(v2)可以作为稀疏感知方向新的baseline,推动该领域的进步。



授权代理商:世强先进(深圳)科技股份有限公司
技术资料,数据手册,3D模型库,原理图,PCB封装文件,选型指南来源平台:世强硬创平台www.sekorm.com
现货商城,价格查询,交期查询,订货,现货采购,在线购买,样品申请渠道:世强硬创平台电子商城www.sekorm.com/supply/
概念,方案,设计,选型,BOM优化,FAE技术支持,样品,加工定制,测试,量产供应服务提供:世强硬创平台www.sekorm.com
集成电路,电子元件,电子材料,电气自动化,电机,仪器全品类供应:世强硬创平台www.sekorm.com
  • +1 赞 0
  • 收藏
  • 评论 0

本文由FY转载自地平线HorizonRobotics公众号,原文标题为:开发者说 | Sparse4D系列算法:迈向长时序稀疏化3D目标检测的新实践,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关研发服务和供应服务

评论

   |   

提交评论

全部评论(0

暂无评论

相关推荐

一图看懂地平线智驾科技,助力技术普惠,让领先的智驾科技,陪伴用户每刻每程

地平线始终秉持软硬结合的技术理念以软件为牵引,硬件为驱动,系统为闭环实现算法、算力、系统的全面技术突破。

2024-06-26 -  原厂动态 代理服务 技术支持 采购服务

如何打造“好用”的算法工具链?地平线「你好,开发者」工具链技术专场

地平线作为国内自动驾驶智能计算方案领域的领头羊,基于征程系列芯片打造了天工开物算法工具链。天工开物为开发者提供了一套灵活、高效、开放的软件工具,能够满足其在模型训练、量化、优化、编译、仿真和部署、调试等各个环节的开发需要。

2023-11-18 -  原厂动态 代理服务 技术支持 采购服务

地平线与中科创达成立合资公司,共同加速智能驾驶的规模化量产落地

2022年4月18日,中国智能驾驶芯片领导者地平线与全球领先的智能操作系统产品和技术提供商中科创达宣布成立合资公司。合资公司将由中科创达控股,聚焦智能驾驶赛道,并围绕地平线车规级AI芯片为主机厂及一级供应商等企业提供高质量的智能驾驶软件平台和算法服务,共同加速智能驾驶的规模化量产落地。

2022-04-29 -  原厂动态 代理服务 技术支持 采购服务

【IC】地平线发布征程6和高阶城区智驾样板间,以顶级的软硬结合全栈技术加速智驾平权

2024年4月24日,地平线举办“征程所向,向高而行”——2024智驾科技产品发布会。立足于智能驾驶时代,地平线凭借对软硬结合全栈技术理念的前瞻预判和深厚积累,重磅发布新一代车载智能计算方案征程®6系列以及Horizon SuperDrive™全场景智能驾驶解决方案,全面开启智能驾驶的范式级创新,加速智驾平权时代的到来。

2024-04-26 -  产品 代理服务 技术支持 采购服务

迈向端到端自动驾驶,地平线正式开源Sparse4D算法

1月22日,地平线将业内领先的纯视觉自动驾驶算法——Sparse4D系列算法开源,推动行业更多开发者共同参与到端到端自动驾驶、稀疏感知等前沿技术方向的探索中。目前,Sparse4D算法已在GitHub平台上线。

2024-02-27 -  原厂动态 代理服务 技术支持 采购服务

地平线天工开物平台全链路AI开发平台,提供便捷开发解决方案| 视频

本视频讲述了HorizonOpenExplorer天工开物的全链路AI开发平台。从算法训练到模型部署,便捷开发到快速形成解决方案。

2022-05-06 -  原厂动态 代理服务 技术支持 采购服务

如何打造一颗好的自动驾驶AI芯片?从动态的算法演进出发,充分结合软硬件进行优化

​地平线BPU算法负责人就如何打造一颗好的自动驾驶AI芯片这一主题,围绕AI计算需求增长带来领域专有架构芯片、自动驾驶软件算法方案、从自动驾驶软件算法方案看对AI芯片的要求、一些设计自动驾驶AI芯片的实践四部分进行了深入解读。

2022-04-01 -  行业资讯 代理服务 技术支持 采购服务

地平线与科博达签署战略合作协议,基于地平线征程计算方案打造多款高性能产品

近日,地平线与自动驾驶解决方案提供商科博达签署战略合作协议,双方将围绕产品开发、技术探索展开积极合作,共同推动智能驾驶前沿技术落地。基于地平线高性能的征程®系列芯片,科博达将充分发挥在智能驾驶域控制器、生产制造、软件算法等方面的优势。

2023-04-18 -  原厂动态 代理服务 技术支持 采购服务

X3J3 图像系统接口手册

描述- 本手册详细介绍了地平线机器人公司开发的图像系统接口,包括模块简介、软件接口和交互数据。手册涵盖了自动曝光(AE)、自动白平衡(AWB)、去马赛克(Demosaic)、锐化(Sharpen)、伽玛校正(Gamma)、局部色调映射(Iridix)、色彩噪声减少(CNR)、颜色空间转换(Color Space Conversion)等模块的功能和接口。此外,还介绍了3A(自动对焦、自动曝光、自动白平衡)算法的注册和交互数据,以及软件接口和控制接口的具体实现。

型号- X3J3

2021-02  - 地平线  - 用户指南  - V1.0 代理服务 技术支持 采购服务 查看更多版本

【经验】地平线ISP工具Control tool的使用方法介绍

Control tool是isp-tuning时tuning ISP参数的图形界面工具,对于刚接触地平线的开发者来说,会比较陌生,下面详细介绍Control tool的使用方法。

2022-09-10 -  设计经验 代理服务 技术支持 采购服务

地平线算法工具链新进展! GANet在征程®5上实现高效部署

地平线征程5是专为高阶智能驾驶打造的智能计算方案,搭载地平线第三代架构BPU--贝叶斯(Bayes),算力可达128TOPS,是率先实现前装量产的国产百TOPS级智能计算方案。基于征程5开发的高等级自动驾驶方案可实现ADAS功能、高速导航智能驾驶、城区导航智能驾驶和智慧泊车的全场景覆盖。

2024-02-23 -  原厂动态 代理服务 技术支持 采购服务

地平线旭日® X5 介绍

描述- 地平线公司作为智能驾驶计算方案提供商,专注于深度神经网络芯片研发。其产品征程系列和旭日系列芯片广泛应用于自动驾驶、智能驾驶辅助系统等领域。公司拥有150+车型前装定点,1000万+出货量,200+生态合作伙伴,1200+专利,1500+研发人员。地平线旭日芯片持续迭代,提供高效进化的智能平台,支持多种算法加速需求。旭日5芯片集成了CPU、BPU、GPU、DSP四合一异构加速,满足不同算法加速需求。

2024/9/27  - 地平线  - 商品及供应商介绍 代理服务 技术支持 采购服务

【经验】地平线X3M SDB开发板烧录ubuntu镜像实操和注意事项

地平线X3M SDB开发板,地平线论坛已经支持yocto linux和ubuntu两种SDK包,本文实操烧录ubuntu镜像以及说明注意事项。

2022-06-24 -  设计经验 代理服务 技术支持 采购服务

便携式呼吸机的硬件电路设计和软件算法

本文从电路设计、软件算法等方面介绍了如何基于世强代理的SMI SM9541压力传感器设计出一款性能良好且低成本的便携式呼吸机。

2016-03-18 -  方案 代理服务 技术支持 采购服务
展开更多

电子商城

查看更多

品牌:地平线

品类:软件包

价格:¥20.0000

现货: 730

品牌:地平线

品类:软件包

价格:¥21.2494

现货: 378

品牌:地平线

品类:软件包

价格:

现货: 0

品牌:地平线

品类:电源管理IC

价格:¥20.0000

现货: 814

品牌:地平线

品类:SOC

价格:¥144.8208

现货: 673

品牌:地平线

品类:SOC

价格:¥128.7296

现货: 409

品牌:地平线

品类:AIOT RDK MODULE

价格:¥429.0000

现货: 269

品牌:地平线

品类:AIOT RDK MODULE

价格:¥319.0000

现货: 221

品牌:地平线

品类:Intelligent Robot SoC

价格:

现货: 120

品牌:地平线

品类:摄像头模组

价格:¥150.0000

现货: 91

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

现货市场

查看更多

品牌:地平线

品类:软件包

价格:¥4.8667

现货:1,517

品牌:地平线

品类:SOC

价格:¥40.9328

现货:1,804

品牌:地平线

品类:单片机

价格:¥147.0000

现货:256

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

服务

查看更多

FloTHERM热仿真

提供稳态、瞬态、热传导、对流散热、热辐射、热接触、和液冷等热仿真分析,通过FloTHERM软件帮助工程师在产品设计初期创建虚拟模型,对多种系统设计方案进行评估,识别潜在散热风险。

实验室地址: 深圳 提交需求>

散热方案设计

使用FloTHERM和Smart CFD软件,提供前期热仿真模拟、结构设计调整建议、中期样品测试和后期生产供应的一站式服务,热仿真技术团队专业指导。

实验室地址: 深圳 提交需求>

查看更多

授权代理品牌:接插件及结构件

查看更多

授权代理品牌:部件、组件及配件

查看更多

授权代理品牌:电源及模块

查看更多

授权代理品牌:电子材料

查看更多

授权代理品牌:仪器仪表及测试配组件

查看更多

授权代理品牌:电工工具及材料

查看更多

授权代理品牌:机械电子元件

查看更多

授权代理品牌:加工与定制

世强和原厂的技术专家将在一个工作日内解答,帮助您快速完成研发及采购。
我要提问

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

研发客服
商务客服
服务热线

联系我们

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

投诉与建议

E-mail:claim@sekorm.com

商务合作

E-mail:contact@sekorm.com

收藏
收藏当前页面