New Gate-drive Techniques Reduces the Cost and Complexity of Implementing Sic Fet Designs in Ev Systems

2021-03-22 Silicon Labs
silicon-carbide FETs,SiC FETs,Si828x,Silicon Labs silicon-carbide FETs,SiC FETs,Si828x,Silicon Labs silicon-carbide FETs,SiC FETs,Si828x,Silicon Labs silicon-carbide FETs,SiC FETs,Si828x,Silicon Labs

Electric vehicles are pushing the limits of today’s power conversion technology, and the advent of high-power silicon-carbide (SiC) FETs has pushed the envelope even further. The many advantages of SiC FETs allow for higher switching speeds and higher voltages yielding smaller magnetics, lighter-weight cables, and higher efficiencies. These improvements have given electric vehicles a greater range and more capabilities.


New gate-drive techniques are required for SiC FET designs. One requirement is that they include negative gate voltages to ensure SiC FETs stay completely off. Generation of these negative voltages requires use of an isolated power supply. Thus the design of SiC gate drives may seem to be a daunting task. However, a review of half-bridge fundamentals and flyback converter techniques can quickly demystify the necessary steps in the design.


At the heart of the onboard chargers (OBCs), main dc-dc converters, traction inverters, and many other systems that make up EVs are two switching devices. They are typically depicted in schematics as being stacked one on top of the other, forming a half bridge. Half bridges allow the center node between the two switching devices to be efficiently pulled to the positive or negative rail. In an EV, these rails are typically the dc link rails which can reach 800 or even 1,000 V with the latest SiC FET technology. Unfortunately, stacking the FETs in a half- bridge configuration requires special attention to gate driver ground references.


To turn on a FET, the gate-source voltage, VGS, must be raised to a certain level, usually ~15 V for SiC FETs. Gate drivers typically pull the gate voltage to their VDD rail to turn on the FET. If the gate drivers use the same power rails, and the high-side gate driver’s ground is tied to the negative rail (dc link-), the output of the high-side gate driver is referenced to the dc link-. This ground connection creates many issues and simply does not work.


SiC FETs in a half-bridge configuration. Half bridges allow the center node, shown by the blue circle, to be efficiently pulled to the positive or negative rail. In an EV, these rails are typically the dc link rails, which can reach 800 or even 1,000 V with the latest SiC FET technology.


An incorrect gate driver connection (left) and a correct connection (right). If the gate drivers use the same power rails, and the high-side gate driver ground is tied to the negative rail (dc link -), the output of the high-side gate driver is referenced to the dc link. This creates many issues and simply does not work. For example, if the low-side FET is off, then the source of the high-side FET is floating relative to the high-side gate driver, and VGS is unknown. The solution: The two gate drivers use separate power supplies, and the high-side gate driver’s ground is tied to the source of the high-side FET.


For example, if the low-side FET is off, the source of the high-side FET floats relative to the high-side gate driver, and VGS is unknown. The solution: The two gate drivers use separate power supplies, and the high-side gate driver’s ground is tied to the source of the high-side FET. In this configuration, the high-side gate driver is referenced to the FET source connection; so, even as the FET source rises to dc link+, the gate-source voltage remains the same.


With the high-side gate drive issue solved, the next step is to generate power supplies for the gate drivers and negative gate voltage. The correct connection uses separate power supplies, and the high-side gate driver ground is tied to the high-side FET’s source.


The process of designing supplies for the gate drivers in a half bridge can often become a daunting endeavor involving dc-dc controllers, transformers, and PCB area constraints. The negative gate voltage requirement of SiC FETs further complicates supply design. Finally, most EV systems connect to the high-voltage dc link and require that the low-voltage control portion be isolated from the high-voltage power conversion stage. However, with a few upgrades, a flyback converter can be modified to meet all of these requirements.


Most EVs today have a main dc-dc converter that steps the dc link voltage down to the lower voltage rails (typically 12 and 48 V) used by most low-power electronic systems. By means of an isolated flyback converter, one of these low-voltage rails can be used to power the isolated gate drivers. In a typical configuration, a flyback converter’s transformer provides isolation and has two separate secondary side windings to create two supplies for the two gate drivers. Because the two outputs are coupled by the transformer, the dc-dc controller only directly regulates one of the two outputs.


The other output is indirectly regulated through the interwinding coupling of the transformer. This configuration causes the indirectly regulated output to perform slightly worse than the directly regulated output but not enough to impact the overall system. Use of a single transformer and converter for both outputs reduces board space and cost. By leveraging this configuration, the transformer can be further modified to create the negative gate voltage required by SiC FETs.


A half bridge with a dual-output flyback converter for powering isolated gate drivers. Here, the 12-V rail powers both the primary side and secondary sides of the isolated gate drivers. The flyback converter’s transformer provides isolation and has two separate secondary side windings to create two supplies for the two gate drivers. Because the two outputs are coupled by the transformer, the dc-dc controller only directly regulates one of the two outputs. The other output is indirectly regulated through the interwinding coupling of the transformer.


Now consider a flyback transformer modified to with taps in the middle of each of the two output windings (denoted VMIDA and VMIDB in the nearby schematic). In the high-side gate driver power domain, the middle tap creates a positive voltage relative to one of the end taps (VGNDA in the schematic) and a negative voltage with respect to the other (VDDA). The source of the high side FET is tied to the middle tap (VMIDA) and the gate driver remains referenced to the low tap (VGNDA). When the gate driver turns the FET off, it pulls the FET gate to its ground. This causes the voltage on the gate of the FET (VGNDA) to be below that of the source voltage (VMIDA) . The connection creates a negative gate voltage to ensure the SiC FET is held in the off state.


The flyback transformer modified with taps for VMIDA and VMIDB to the two output windings. In the high side gate driver power domain, highlighted in blue, VMIDA creates a positive voltage relative to VGNDA and a negative voltage with respect to VDDA. The source of the high side FET is tied to VMIDA, and the gate driver remains referenced to VGNDA. When the gate driver turns the FET off, it pulls the FET gate to its ground resulting in the voltage on the gate of the FET (VGNDA) going below the source voltage (VMIDA). Now a negative gate voltage ensures the SiC FET is held in the off state. Likewise, this same operation applies to the low-side gate driver power domain, highlighted in green.


Note this configuration also changes the gate-source voltage when the gate driver turns the high-side SiC FET on and pulls the FET gate to the high-side tap voltage (VDDA). Adjusting the transformer turns ratio between the middle tap and the high and low taps (VDDA to VMIDA and VMIDA to VGNDA) sets the middle-tap voltage (VMIDA). Likewise, this same operation applies to the low-side gate driver power domain.


Many isolated gate driver devices, such as the SILICON LABSSi828x, include a dedicated VMID pin to sense the drain-to-source voltage across the SiC FET for desaturation detection. To further reduce cost and board space, many isolated gate drivers include a built-in dc-dc controller. The Silicon Labs’ Si828x also includes this feature. The integrated dc-dc controller eliminates the need for a separate controller IC and often makes optocoupler feedback unnecessary because the isolated gate driver passes the feedback across the isolation barrier internally. Thus through use of a flyback converter with a sophisticated transformer design, a single dc-dc converter can power the isolated gate drivers and generate the negative gate voltage.


A sophisticated flyback converter coupled with the latest innovations in isolated gate drivers simplifies the task of driving SiC FETs in half-bridge configurations. It also reduces the cost and complexity of implementing SiC FET designs in the many EV systems using half bridges. As systems from onboard chargers to traction inverters adopt SiC FETs, electric vehicles gain higher efficiency, can work at higher voltages, and employ lighter-weight components, truly making them the automobiles of the future.

授权代理商:世强先进(深圳)科技股份有限公司
技术资料,数据手册,3D模型库,原理图,PCB封装文件,选型指南来源平台:世强硬创平台www.sekorm.com
现货商城,价格查询,交期查询,订货,现货采购,在线购买,样品申请渠道:世强硬创平台电子商城www.sekorm.com/supply/
概念,方案,设计,选型,BOM优化,FAE技术支持,样品,加工定制,测试,量产供应服务提供:世强硬创平台www.sekorm.com
集成电路,电子元件,电子材料,电气自动化,电机,仪器全品类供应:世强硬创平台www.sekorm.com
  • +1 赞 0
  • 收藏
  • 评论 0

本文由翊翊所思转载自Silicon Labs,原文标题为:Powering EVs with silicon carbide,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

评论

   |   

提交评论

全部评论(0

暂无评论

相关推荐

【应用】如何正确使用IGBT驱动解决米勒电容导致寄生导通问题

本文以Silicon Labs门极智能驱动Si8285为例,介绍如何正确使用IGBT门极智能驱动解决米勒电容导致的寄生导通问题以提高产品可靠性。

新应用    发布时间 : 2016-11-18

Silicon Labs Quality and Reliability Report First Quarter 2021

型号- EFM8X,BGM12X,SI2167-BXX,EFR32MG1V1X,SL2309,SI539X,SI2166-DXX,SI2169-X,TSM96XX,SL38020,SI1102,SI2433,C8051F2XX,C8051F39X,SI2436,SI5225X,SI2438,SI484X,SI5384X,SI2437,SI5372X,TS3001,TS3002,SI242X,SI2439,TS12XX,TS3003,TS3004,TS3005,CP213X,TS3006,EFR32MG14PX,EFM32LG,ZM51X,IAP6XX,SL2304,SL2305,SI49XX,CP2102N,CF0XX,EFM32GG3X,SI2167-AXX,SI2166-CXX,IAP87X,SI2168-X,SI1120,SL16XX,SI2456,SI47XX-B1X,SI47XX-C3X,C8051F1XX,EFM32TG110X,SI5382X,SI220X,SI474X,CP211X,TS6XXX,WF200,TSM60XX,SI5310-C,SI3291X,CYWXXX,SI1132,IAP7XX,SI1133,CP2120,SI221X,SI100X,SI5383X,CF1XX,EFM32JG,SI475X,SI5371X,CF38X,EFM32GG8X,SI5339X,SL28PCIE50,SL188X,TSM98XX,SI2166-BXX,CTXXX,SI828X,SL2874,SI804X,SI5380X,SI7060X,C8051F4XX,TS1005,TS1004,C8051F35X,SI47XX-B3X,TS1003,TS1002,CP2107,TS1001,CP2105,CP2104,EZR32X,SI3404X,CP2109,CP2108,SIM3XXXX,SL2861,SI805X,SL2864,IAP4XX,SI2401,SI2400,SI47XX-B2X,SI2403,CP2103,EFM32HG,CP2102,CP2101,SI47XX-C4X,C8051F36X,CF2XX,CF39X,SI5381X,SI4709,CF36X,SI3407X,SI4708,TS7XXX,S3UX,SL28PCIE30,CP254X,SI2166-AXX,TSM97XX,SL3816,SL2850,SI470X-C19,SI806X,SI4830,SL2854,SI4834,SI2535,C8051F37X,SI4836,CF37X,CP26XX,SI3406X,SI482X,EFM32GG9X,EFM32TG2X,C8051TXXX,C8051F38X,CF34X,EFR32MG13P8X,SI5328,TS1005SL28EB717,SI5327,SI5326,SI5325,SI5324,SI5323,SI53102,SI5322,SI824X,SI5211X,SI5332X,C8051F31X,EFM32G2X,SI5320X,EFR32FG1X,SL28SR,SI703X,SL3800,SI2417-E,SL151,CF4XX,SL153,CF35X,SI2417-D,EFM32TG108X,SL28EB636,SI483X-B,SL158,SI2493-D,SI2493-C,SI53108,C8051F32X,SI2164-X,SI83XX,SI53106,SI825X,51X,SL28EB742,CF32X,EFR32MG13P6X,SI2404-D,IA14XX,SI2404-C,SL28EB745,TSM99XX,SL28EB740,C8051F33X,SI3050-D,SI5321-H,SI3050-E,SI5330X,RM2,SI826X,C8051F5XX,SI3228X,CF5XX,SL28EB731,CF33X,EFR32MG13P7X,SL28EB735,SL23EP,SI2163-X,C8051F34X,SI5331X,SI827X,SI803X,53X,EFR32FG2X,TS9XXX,SI3229X,SI2167-DXX,CF30X,CPTXXXX,SI5376X,C8051F8XX,SI7008,SI7007,SI7006,SI7005,54X,SL28770,SL28EB797,SL28773,SL28774,SL28775,CF31X,SL28776,SL28779,SI3226-X,55X,CP4000,SI241X-B,SI2167-CXX,SI241X-C,IA12XX,SI241X-A,BM11X,SI241X-H,SI241X-F,SI241X-G,SL28EB781,C8051F7XX,SI822X,SI50122,SI5374X,EFR32Z,SI701X,56X,EFR32MG1P7X,EFM32GG2X,EFR32R,SI2457-FT,SL28EB774,CF7XX,WFM200,SI2165-X,SI823X,SI5375X,C8051F30X,57X,SI702X,SI84XX,BGM11SX,CP22XX,EFM32GG1X,TSM12XX,ZW0X,SI307X,500X,BGX13S22GX,CF8XX,SI479XX,EFM32TG11BX,SI41XX,SI87XX,SI308X,59X,SI8SX,SI502X,EFR32MG1P6X,SI2160-X,SI405X,SI8273-D-IDI,TSAXXXX,EFPX,IA10XX,EFM32ZG,C8051F9XX,SI854X,SI406X,SL38160CZC-30B,SI2435-E,SL15300EZC-70,SI2435-F,SI72X,CF9XX,SI2435-C,SI2435-D,EFM32G8X,SI86XX,SI504X,SI2435-B,SL15300EZC-75,EFR32MG1B6X,SI3226X-C,SL28EB721,SL15100CZC-1,SL28EB720,SL28EB725,BGM220SX,IA32XX,SI2191,EFR32MG1P1X,SI2190,SI53019,S3CX,SI2196,EFR32BG1X,SI436X,SI5336X,SL28EB719,SI5301C,SL28EB717,EFR32MG1B7X,IAP90X,SI2415-D,SI53212X,SI5338X,RWM3,SI216XX-X,SI2162-X,SI3052,EFR32MG1P2X,SI3054,SI5216X,SI3056,SI510X,SI534X,SI401X,ZGM,MGM13SX,SI5364,SI5365,SL28PCIE2,SI5368,SI31XX,SI535X,SI5369,SI5366,SI5213X,SI5367,SI5334X,SI402X,SI511X,EFR32MG2X,SI850X,EFM32PG2,EFM32WG,SI5311X,EFM32G3X,SI5013,EFR32BG2X,SI5010,SI88XX,SD35X,SI306X,SI403X,SL28DB,SI2161-X,SI5214X,SI5335X,SI512X,EFM32PG1,SI851X,SL281XX,TSM92XX,SI3219X,SL28PCIE10,CP240X,IAP93X,SI705X-A20,SI2151,SI2150,SI2153,SI3000,SI2155,BGM13S3X,SI2157,SI117X,SI2156,SI2159,SI3006,SL28PCIE19,SI2158,SI3005,SI347X,SI432X,SI892X,SI3008,SI3007,EM26X,SI3009,SL28PCIE16,EFR32MG1B1X,SI5386X,SL28PCIE14,SI3218X,CY2815,SI3011,SI3010,SI3012,SI118X,SI3015,SI348X,SI106X,SI3014,SI324X,SI3017,SI433X,SI5317,SI3016,SI3019,SI3018,SI445X,SI5316,EFR32MG1B2X,BGM13S22FX,EM25X,SI5319,IAP91X,TSM91XX,CP250X,EFM32TG8X,SI2171,SI2170,SI2173,SI2172,SI2177,SI2176,SI2178,SI446X,SI5315X-A,SI5388X,SI5315X-C,TS3300,SI3402X,SI2180,SI2182,SI705X-A10,SI2181,SI5409X,SI2183,SI2185,SI108X,SI302X,SI435X,SL28PCIE06,EM35X,SI3239X,SI2111,SI2113,C8051F0XX,SI2115,SI476X,SI210X,SI101X,EM34X,SI5221X,TS4XXX,SI2434-D,SI2457-D,TS331X,SI2457-C,IAP86X,EFR32MG12PX,SI3450,SI4780,SI3453,SI3211,SI3452,SI3210,BGX220S2,SI2124,SI3455,SI3454,SI3457,SI3215,SI477X,SI2434-C,SI3456,SI114X,SI2128,SI3459,SI5389X,SI2127,SI102X,SI3216,SI3458,SI320X,SI4732-AXX,SI5220X,SL15300DZC-56,SI3217X,TSM93XX,SI4430,SI2494,SI3220,SI4312,SI4313,SI4310,SI4431,SI4311,SI4432,SI2137,SI115X,SI2136,SI3225,SI35XX,SI4438,SI103X,SI2138,SI3227,SI890X,SI442X,TS11XX,EM31X,SI47XX-D,SI8271-D-IDI,SI2140,SI2141,SI3230,SI2144,SI3233,SI2143,SI3232,SI2146,SI2145,SI2148,SI346X,SI2147,SI46XX,SI3238,SI8271-D-YDI

测试报告  -  SILICON LABS  - Rev No 01  - 14-Apr-2021 PDF 英文 下载

Si8281/82/83/84 Data Sheet

型号- SI8281BC-AS,SI8284DD-IS,SI8283ED-IS,SI8284ED-AS,SI8284CD-IS,SI8284ED-IS,SI8284CD-AS,SI8281BC-IS,SI8284DD-AS,SI8283ED-AS,SI828XCX,SI8281BD-AS,SI8284BD-AS,SI8282CC-AS,SI8282BC-IS,SI8282ED-AS,SI8283EC-IS,SI8282DD-IS,SI8282DD-AS,SI8283EC-AS,SI828X,SI8281BD-IS,SI8284BD-IS,SI8282CC-IS,SI8282BC-AS,SI8282ED-IS,SI828XDX,SI8284BC-AS,SI8282BD-IS,SI8282CD-AS,SI8282EC-AS,SI8281DD-AS,SI8283CC-IS,SI828X FAMILY,SI8281ED-AS,SI8282DC-IS,SI8283DC-AS,SI8283BD-AS,SI8281CD-IS,SI8281ED-IS,SI8282DC-AS,SI8283DC-IS,SI8283BD-IS,SI8281CD-AS,SI828XEX,SI8284BC-IS,SI8282BD-AS,SI8282CD-IS,SI8282EC-IS,SI8281DD-IS,SI8283CC-AS,SI8284DC-IS,SI8281EC-AS,SI8281DC-AS,SI8283CD-IS,SI8284,SI8284EC-AS,SI828XD,SI828XE,SI8284CC-IS,SI828XB,SI8281CC-IS,SI8281,SI828XC,SI8282,SI8281EC-IS,SI8283BC-AS,SI8283DD-AS,SI8283,SI8284EC-IS,SI8284CC-AS,SI8281CC-AS,SI8283BC-IS,SI8283DD-IS,SI8284DC-AS,SI828XBX,SI8281DC-IS,SI8283CD-AS

数据手册  -  SILICON LABS  - Revision 2.1  - July, 2021 PDF 英文 下载 查看更多版本

Silicon Labs(芯科科技)电源产品/定时器/IoT产品介绍

描述- 2020 April Sales Training Slides

型号- SI547,SI8422BB,SI545,SI546,SI549,XG12,XG21B,SI533XX,SI5383,XG21A,SI5342,SI5384,SI5341,SI536X,SI5347,SI5388,SI5389,SI532X,SI5348,EFR32FG22,CK440,EFR32BG22,SI5508,EFR32,SI5332-GM,SI534XH,SI5350,SI53471,SI53472,SI5392,SI5397,SI41XX,SI5351,SI828X,SI5357,SI537X,SI561,SI347X,SI562,SI560,SI565,SI566,SI5518,SI564,SI569,SI54X,XG1X,SI567,SI532XX,EFR32XG21B,SI823HX,SI538X,SI893X,BG22,SI534X,BGM220S,BGM220P,BGM220,SI51X,EFR32MG22,SI34071,SI522XX,SI834X,SI8920,SI5332,SI539X,SI88XX,SI8921,SI8922,SI5330,SI5335,SI8252X,SI3474,XG22,SI531X,XG21,SI540,SI5338,SI842X,SI830X,EFP01,SI894X,DB2000

商品及供应商介绍  -  SILICON LABS  - 2020年4月 PDF 英文 下载

【经验】基于隔离器检测功能脚DSAT的误报警延时检测网络

Silicon Labs推出的Si828x隔离栅极驱动器是专为保护电源逆变器以及绝缘栅双极晶体管等器件而设计的,它具有5KVrms的隔离等级以及良好的定时特性和业内最快的趋饱和检测功能。

设计经验    发布时间 : 2019-07-04

UG484: Si828x-HB-EVB User’s Guide

型号- 1825AC103KAT1A,CR0805-10W-1001F,STPS140Z,RB160MM-30TF,LCR1210-R100F,CR1210-4W-000,1825AC104KAT1A,151-201-RC,CRCW20103R00FKEFHP,ERJ-3EKF1503V,RC0603FR-072K2L,ZXTN2010Z,C1210X7R250-226M,MBR0580S1,CR0603-16W-8661F,CR0603-10W-1000F,CR2512-2W-10R0FT-W,ERA-8AEB2493V,CR0603-16W-1000F,CR0805-10W-1000F,CR1206-4W-20R0FT,RC0805FR-0730RL,RC1206FR-07221KL,C1210X7R250-106M,MKP1848S61010JY2B,ZXTP2012Z,CR0603-10W-4701F,CR1206-4W-1R0J,C0805X7R101-473K,151-203-RC,LT4430ES6#TRMPBF,PVG3A202C01R00,UTB02286S,C0805X7R250-225M,SI8284,CR0805-10W-2003F,SI8285,CRGCQ0805F330K,C1206X7R100-106M,SI8281,PMBT2907A,C0402X7R500-222K,ERJ-3EKF2493V,142-0701-201,CR0805-8W-1001F,SDN-414-01,C0603X7R250-104K,SI828XTE_SIC-HV PCB,C0603X7R250-104M,LTST-C170KRKT,C0603C271K5RACTU,1729131,1N4148W,C0402X7R100-104K,TSW-102-07-T-S,8174,C0805X7R201-471M,RNCP0805FTD499R,CR0805-10W-222J,CR1206-4W-1R00F,CR0805-10W-000,TSW-103-07-T-S,EVQ-PAD04M,LTST-C170GKT,SMAZ24-13-F,CR1206-8W-1004F,151-205-RC,CR0805-8W-1002F,MBR1H100SF,SI8285CD-A-IS,CR0603-16W-3302F,C0805X5R160-475K,CRGCQ0805F22K,SI828X,C3M0016120D,CD74AC04M,C0805C0G500-105F,NLCV32T-100K-PF,C3M0016120K,ERA-6AEB3161V,PS2911-1,CC0603KPX7R9BB104,C1210X7R500-106M,BU-5200-A-4-0,C40-058-VE,SI8281CD-IS,SI828X-HB-EVB,TPS40200,CR0402-16W-103J,ZXTP2027FTA,CR1206-4W-10R0F,C0805C0G250-223J,C0603X7R101-102K,US1K-13-F,CR0603-16W-1002F,SN74HC00DR,C0603C0G500-100D,132136-12,CR1206-4W-4R02F

用户指南  -  SILICON LABS  - Rev. 0.1  - 2021/05/12 PDF 英文 下载

隔离IGBT驱动芯片Si828X集成了DC-DC转换器,请问该DC-DC转换器能够提供多大输出功率?

隔离IGBT驱动芯片Si828X集成的DC-DC转换器最大可以提供2W的输出功率。

技术问答    发布时间 : 2017-05-05

Test Report: Driving Cree® C3M™SiC MOSFETs with Silicon Labs® Si828x Gate Drivers in applications requiring short-circuit protection

型号- SI828X,SI8285,C3M0065100K,C3M00651000K,SI8281CC-IS,C3M0016120K,SI8281,SI8285CC-IS

测试报告  -  SILICON LABS  - Rev 1  - 2021-01-08 PDF 英文 下载

在IGBT驱动项目中,可以替换PC929的驱动器是哪个型号?

可以推荐Si8286,该隔离器件是采用电容隔离技术,如果Si8286被烧掉后,Si8286呈现是开路状态,同时支持4A的驱动电流,远远超过PC929电流。

技术问答    发布时间 : 2017-05-05

Silicon Labs(芯科科技) Si8285/Si8286高电流栅极驱动器官方数据手册

描述- 本资料描述Si8285/Si8286高电流栅极驱动器只要应用于工业市场和汽车市场。

型号- SI8285CD-ISR,SI8286CC-IS,SI8285CC-ASR,SI8286BC-ISR,SI828XCD,SI8286CD-AS,SI8285BD-IS,SI8286BD-ISR,SI8285CD-ASR,SI8285CD-AS,SI8286BD-IS,SI8285CD-IS,SI8286CD-IS,SI8286CD-ISR,SI8286CC-ISR,SI8285,SI828XBD,SI8286,SI8286CC-ASR,SI8286CC-AS,SI8285BC-IS,SI8285BC-ISR,SI8285CC-ISR,SI828X,SI8286BC-IS,SI8285CC-AS,SI8286CD-ASR,SI8285BD-ISR,SI8285CC-IS

数据手册  -  SILICON LABS  - Rev. 1.0  - 2018 PDF 英文 下载

Si8286应用在驱动IGBT电路中,其Vce检测功能内部电流源输出电流能力有多大?如何实现IGBT退饱和的保护功能?

Si8286CD的DESAT检测功能内部电流源为250uA,在IGBT出现退饱和故障时,电流源给消隐电容充电,当电压超过内部基准电平后,拉低驱动电平,关断IGBT。该电流源的电流比hcpl-316j的150uA要大一些,在变频器内复杂的电磁环境中抗干扰性能会更好。

技术问答    发布时间 : 2017-05-05

【技术】隔离放大器+多功能栅极驱动器 实现变频器IGBT保护

Silicon Labs公司的隔离放大器提供了保护IGBT免于遭受过电流、过载和过电压情况的有效方法。使用Si8920隔离放大器搭配功能多样的栅极驱动器,如Si828x可以实现高成本效益的充分IGBT保护方案。

技术探讨    发布时间 : 2016-11-17

AN1306: Driving SiC MOSFET Switches Using the Si828x Isolated Gate Driver

型号- SI828X,SI828X FAMILY,SI8284,SI8281,SI8282,SI8283

应用笔记或设计指南  -  SILICON LABS  - Rev. 0.1  - 2021/05/21 PDF 英文 下载

新型IGBT智能门极驱动的好帮手

采用智能门极驱动Si8286为核心的IGBT驱动电路,可以实现优越的工作性能,弥补常用IGBT驱动模块的不足。

新应用    发布时间 : 2019-09-04

【应用】Silicon Labs针对电动汽车PTC加热系统的隔离方案,带来高效率和高安全性

隔离对于使MCU能够监控和控制PTC至关重要。Silicon Labs(芯科科技)的Si828x或FET驱动器以及Si823x或Si826x等隔离IGBT栅极驱动器可安全地驱动主电源设备,使用Si892x等隔离测量设备对电压和电流进行测量。

应用方案    发布时间 : 2021-01-12

展开更多

电子商城

查看更多

品牌:SILICON LABS

品类:Wireless Gecko SoC

价格:¥8.1764

现货: 109,878

品牌:SILICON LABS

品类:Mighty Gecko Multi-Protocol Wireless SoC

价格:¥27.0929

现货: 98,034

品牌:SILICON LABS

品类:Wireless SoC

价格:¥9.1982

现货: 88,300

品牌:SILICON LABS

品类:Wireless SoC

价格:¥21.5556

现货: 83,597

品牌:SILICON LABS

品类:8位MCU

价格:¥5.8534

现货: 76,212

品牌:SILICON LABS

品类:Wireless SoC

价格:¥19.9760

现货: 74,309

品牌:SILICON LABS

品类:8位MCU

价格:¥10.6850

现货: 68,189

品牌:SILICON LABS

品类:Wireless Gecko SoC

价格:¥10.4994

现货: 66,784

品牌:SILICON LABS

品类:Transceiver

价格:¥15.8878

现货: 64,419

品牌:SILICON LABS

品类:Wireless Gecko SoC

价格:¥11.5212

现货: 59,367

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

现货市场

查看更多

品牌:SKYWORKS

品类:CMEMS OSCILLATOR

价格:¥0.8369

现货:155,000

品牌:SILICON LABS

品类:Switch Hall Effect Magnetic Position Sensor

价格:¥2.2924

现货:150,000

品牌:SKYWORKS

品类:CMEMS OSCILLATOR

价格:¥0.8369

现货:75,000

品牌:SKYWORKS

品类:driver

价格:¥2.7896

现货:64,000

品牌:SKYWORKS

品类:BROADCAST FM RADIO TUNER

价格:¥4.1230

现货:57,107

品牌:SKYWORKS

品类:CMEMS OSCILLATOR

价格:¥1.3948

现货:35,000

品牌:SKYWORKS

品类:Broadcast FM Radio Tuner

价格:¥4.3704

现货:33,789

品牌:SKYWORKS

品类:芯片

价格:¥4.0745

现货:33,557

品牌:SKYWORKS

品类:调谐器

价格:¥4.2672

现货:31,901

品牌:SKYWORKS

品类:CMEMS OSCILLATOR

价格:¥1.3948

现货:30,000

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

查看更多

授权代理品牌:接插件及结构件

查看更多

授权代理品牌:部件、组件及配件

查看更多

授权代理品牌:电源及模块

查看更多

授权代理品牌:电子材料

查看更多

授权代理品牌:仪器仪表及测试配组件

查看更多

授权代理品牌:电工工具及材料

查看更多

授权代理品牌:机械电子元件

查看更多

授权代理品牌:加工与定制

世强和原厂的技术专家将在一个工作日内解答,帮助您快速完成研发及采购。
我要提问

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

研发客服
商务客服
服务热线

联系我们

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

投诉与建议

E-mail:claim@sekorm.com

商务合作

E-mail:contact@sekorm.com

收藏
收藏当前页面