New Gate-drive Techniques Reduces the Cost and Complexity of Implementing Sic Fet Designs in Ev Systems
Electric vehicles are pushing the limits of today’s power conversion technology, and the advent of high-power silicon-carbide (SiC) FETs has pushed the envelope even further. The many advantages of SiC FETs allow for higher switching speeds and higher voltages yielding smaller magnetics, lighter-weight cables, and higher efficiencies. These improvements have given electric vehicles a greater range and more capabilities.
New gate-drive techniques are required for SiC FET designs. One requirement is that they include negative gate voltages to ensure SiC FETs stay completely off. Generation of these negative voltages requires use of an isolated power supply. Thus the design of SiC gate drives may seem to be a daunting task. However, a review of half-bridge fundamentals and flyback converter techniques can quickly demystify the necessary steps in the design.
At the heart of the onboard chargers (OBCs), main dc-dc converters, traction inverters, and many other systems that make up EVs are two switching devices. They are typically depicted in schematics as being stacked one on top of the other, forming a half bridge. Half bridges allow the center node between the two switching devices to be efficiently pulled to the positive or negative rail. In an EV, these rails are typically the dc link rails which can reach 800 or even 1,000 V with the latest SiC FET technology. Unfortunately, stacking the FETs in a half- bridge configuration requires special attention to gate driver ground references.
To turn on a FET, the gate-source voltage, VGS, must be raised to a certain level, usually ~15 V for SiC FETs. Gate drivers typically pull the gate voltage to their VDD rail to turn on the FET. If the gate drivers use the same power rails, and the high-side gate driver’s ground is tied to the negative rail (dc link-), the output of the high-side gate driver is referenced to the dc link-. This ground connection creates many issues and simply does not work.
SiC FETs in a half-bridge configuration. Half bridges allow the center node, shown by the blue circle, to be efficiently pulled to the positive or negative rail. In an EV, these rails are typically the dc link rails, which can reach 800 or even 1,000 V with the latest SiC FET technology.
An incorrect gate driver connection (left) and a correct connection (right). If the gate drivers use the same power rails, and the high-side gate driver ground is tied to the negative rail (dc link -), the output of the high-side gate driver is referenced to the dc link. This creates many issues and simply does not work. For example, if the low-side FET is off, then the source of the high-side FET is floating relative to the high-side gate driver, and VGS is unknown. The solution: The two gate drivers use separate power supplies, and the high-side gate driver’s ground is tied to the source of the high-side FET.
For example, if the low-side FET is off, the source of the high-side FET floats relative to the high-side gate driver, and VGS is unknown. The solution: The two gate drivers use separate power supplies, and the high-side gate driver’s ground is tied to the source of the high-side FET. In this configuration, the high-side gate driver is referenced to the FET source connection; so, even as the FET source rises to dc link+, the gate-source voltage remains the same.
With the high-side gate drive issue solved, the next step is to generate power supplies for the gate drivers and negative gate voltage. The correct connection uses separate power supplies, and the high-side gate driver ground is tied to the high-side FET’s source.
The process of designing supplies for the gate drivers in a half bridge can often become a daunting endeavor involving dc-dc controllers, transformers, and PCB area constraints. The negative gate voltage requirement of SiC FETs further complicates supply design. Finally, most EV systems connect to the high-voltage dc link and require that the low-voltage control portion be isolated from the high-voltage power conversion stage. However, with a few upgrades, a flyback converter can be modified to meet all of these requirements.
Most EVs today have a main dc-dc converter that steps the dc link voltage down to the lower voltage rails (typically 12 and 48 V) used by most low-power electronic systems. By means of an isolated flyback converter, one of these low-voltage rails can be used to power the isolated gate drivers. In a typical configuration, a flyback converter’s transformer provides isolation and has two separate secondary side windings to create two supplies for the two gate drivers. Because the two outputs are coupled by the transformer, the dc-dc controller only directly regulates one of the two outputs.
The other output is indirectly regulated through the interwinding coupling of the transformer. This configuration causes the indirectly regulated output to perform slightly worse than the directly regulated output but not enough to impact the overall system. Use of a single transformer and converter for both outputs reduces board space and cost. By leveraging this configuration, the transformer can be further modified to create the negative gate voltage required by SiC FETs.
A half bridge with a dual-output flyback converter for powering isolated gate drivers. Here, the 12-V rail powers both the primary side and secondary sides of the isolated gate drivers. The flyback converter’s transformer provides isolation and has two separate secondary side windings to create two supplies for the two gate drivers. Because the two outputs are coupled by the transformer, the dc-dc controller only directly regulates one of the two outputs. The other output is indirectly regulated through the interwinding coupling of the transformer.
Now consider a flyback transformer modified to with taps in the middle of each of the two output windings (denoted VMIDA and VMIDB in the nearby schematic). In the high-side gate driver power domain, the middle tap creates a positive voltage relative to one of the end taps (VGNDA in the schematic) and a negative voltage with respect to the other (VDDA). The source of the high side FET is tied to the middle tap (VMIDA) and the gate driver remains referenced to the low tap (VGNDA). When the gate driver turns the FET off, it pulls the FET gate to its ground. This causes the voltage on the gate of the FET (VGNDA) to be below that of the source voltage (VMIDA) . The connection creates a negative gate voltage to ensure the SiC FET is held in the off state.
The flyback transformer modified with taps for VMIDA and VMIDB to the two output windings. In the high side gate driver power domain, highlighted in blue, VMIDA creates a positive voltage relative to VGNDA and a negative voltage with respect to VDDA. The source of the high side FET is tied to VMIDA, and the gate driver remains referenced to VGNDA. When the gate driver turns the FET off, it pulls the FET gate to its ground resulting in the voltage on the gate of the FET (VGNDA) going below the source voltage (VMIDA). Now a negative gate voltage ensures the SiC FET is held in the off state. Likewise, this same operation applies to the low-side gate driver power domain, highlighted in green.
Note this configuration also changes the gate-source voltage when the gate driver turns the high-side SiC FET on and pulls the FET gate to the high-side tap voltage (VDDA). Adjusting the transformer turns ratio between the middle tap and the high and low taps (VDDA to VMIDA and VMIDA to VGNDA) sets the middle-tap voltage (VMIDA). Likewise, this same operation applies to the low-side gate driver power domain.
Many isolated gate driver devices, such as the SILICON LABS’ Si828x, include a dedicated VMID pin to sense the drain-to-source voltage across the SiC FET for desaturation detection. To further reduce cost and board space, many isolated gate drivers include a built-in dc-dc controller. The Silicon Labs’ Si828x also includes this feature. The integrated dc-dc controller eliminates the need for a separate controller IC and often makes optocoupler feedback unnecessary because the isolated gate driver passes the feedback across the isolation barrier internally. Thus through use of a flyback converter with a sophisticated transformer design, a single dc-dc converter can power the isolated gate drivers and generate the negative gate voltage.
A sophisticated flyback converter coupled with the latest innovations in isolated gate drivers simplifies the task of driving SiC FETs in half-bridge configurations. It also reduces the cost and complexity of implementing SiC FET designs in the many EV systems using half bridges. As systems from onboard chargers to traction inverters adopt SiC FETs, electric vehicles gain higher efficiency, can work at higher voltages, and employ lighter-weight components, truly making them the automobiles of the future.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由翊翊所思转载自Silicon Labs,原文标题为:Powering EVs with silicon carbide,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【应用】如何正确使用IGBT驱动解决米勒电容导致寄生导通问题
本文以Silicon Labs门极智能驱动Si8285为例,介绍如何正确使用IGBT门极智能驱动解决米勒电容导致的寄生导通问题以提高产品可靠性。
新应用 发布时间 : 2016-11-18
Silicon Labs Quality and Reliability Report First Quarter 2021
型号- EFM8X,BGM12X,SI2167-BXX,EFR32MG1V1X,SL2309,SI539X,SI2166-DXX,SI2169-X,TSM96XX,SL38020,SI1102,SI2433,C8051F2XX,C8051F39X,SI2436,SI5225X,SI2438,SI484X,SI5384X,SI2437,SI5372X,TS3001,TS3002,SI242X,SI2439,TS12XX,TS3003,TS3004,TS3005,CP213X,TS3006,EFR32MG14PX,EFM32LG,ZM51X,IAP6XX,SL2304,SL2305,SI49XX,CP2102N,CF0XX,EFM32GG3X,SI2167-AXX,SI2166-CXX,IAP87X,SI2168-X,SI1120,SL16XX,SI2456,SI47XX-B1X,SI47XX-C3X,C8051F1XX,EFM32TG110X,SI5382X,SI220X,SI474X,CP211X,TS6XXX,WF200,TSM60XX,SI5310-C,SI3291X,CYWXXX,SI1132,IAP7XX,SI1133,CP2120,SI221X,SI100X,SI5383X,CF1XX,EFM32JG,SI475X,SI5371X,CF38X,EFM32GG8X,SI5339X,SL28PCIE50,SL188X,TSM98XX,SI2166-BXX,CTXXX,SI828X,SL2874,SI804X,SI5380X,SI7060X,C8051F4XX,TS1005,TS1004,C8051F35X,SI47XX-B3X,TS1003,TS1002,CP2107,TS1001,CP2105,CP2104,EZR32X,SI3404X,CP2109,CP2108,SIM3XXXX,SL2861,SI805X,SL2864,IAP4XX,SI2401,SI2400,SI47XX-B2X,SI2403,CP2103,EFM32HG,CP2102,CP2101,SI47XX-C4X,C8051F36X,CF2XX,CF39X,SI5381X,SI4709,CF36X,SI3407X,SI4708,TS7XXX,S3UX,SL28PCIE30,CP254X,SI2166-AXX,TSM97XX,SL3816,SL2850,SI470X-C19,SI806X,SI4830,SL2854,SI4834,SI2535,C8051F37X,SI4836,CF37X,CP26XX,SI3406X,SI482X,EFM32GG9X,EFM32TG2X,C8051TXXX,C8051F38X,CF34X,EFR32MG13P8X,SI5328,TS1005SL28EB717,SI5327,SI5326,SI5325,SI5324,SI5323,SI53102,SI5322,SI824X,SI5211X,SI5332X,C8051F31X,EFM32G2X,SI5320X,EFR32FG1X,SL28SR,SI703X,SL3800,SI2417-E,SL151,CF4XX,SL153,CF35X,SI2417-D,EFM32TG108X,SL28EB636,SI483X-B,SL158,SI2493-D,SI2493-C,SI53108,C8051F32X,SI2164-X,SI83XX,SI53106,SI825X,51X,SL28EB742,CF32X,EFR32MG13P6X,SI2404-D,IA14XX,SI2404-C,SL28EB745,TSM99XX,SL28EB740,C8051F33X,SI3050-D,SI5321-H,SI3050-E,SI5330X,RM2,SI826X,C8051F5XX,SI3228X,CF5XX,SL28EB731,CF33X,EFR32MG13P7X,SL28EB735,SL23EP,SI2163-X,C8051F34X,SI5331X,SI827X,SI803X,53X,EFR32FG2X,TS9XXX,SI3229X,SI2167-DXX,CF30X,CPTXXXX,SI5376X,C8051F8XX,SI7008,SI7007,SI7006,SI7005,54X,SL28770,SL28EB797,SL28773,SL28774,SL28775,CF31X,SL28776,SL28779,SI3226-X,55X,CP4000,SI241X-B,SI2167-CXX,SI241X-C,IA12XX,SI241X-A,BM11X,SI241X-H,SI241X-F,SI241X-G,SL28EB781,C8051F7XX,SI822X,SI50122,SI5374X,EFR32Z,SI701X,56X,EFR32MG1P7X,EFM32GG2X,EFR32R,SI2457-FT,SL28EB774,CF7XX,WFM200,SI2165-X,SI823X,SI5375X,C8051F30X,57X,SI702X,SI84XX,BGM11SX,CP22XX,EFM32GG1X,TSM12XX,ZW0X,SI307X,500X,BGX13S22GX,CF8XX,SI479XX,EFM32TG11BX,SI41XX,SI87XX,SI308X,59X,SI8SX,SI502X,EFR32MG1P6X,SI2160-X,SI405X,SI8273-D-IDI,TSAXXXX,EFPX,IA10XX,EFM32ZG,C8051F9XX,SI854X,SI406X,SL38160CZC-30B,SI2435-E,SL15300EZC-70,SI2435-F,SI72X,CF9XX,SI2435-C,SI2435-D,EFM32G8X,SI86XX,SI504X,SI2435-B,SL15300EZC-75,EFR32MG1B6X,SI3226X-C,SL28EB721,SL15100CZC-1,SL28EB720,SL28EB725,BGM220SX,IA32XX,SI2191,EFR32MG1P1X,SI2190,SI53019,S3CX,SI2196,EFR32BG1X,SI436X,SI5336X,SL28EB719,SI5301C,SL28EB717,EFR32MG1B7X,IAP90X,SI2415-D,SI53212X,SI5338X,RWM3,SI216XX-X,SI2162-X,SI3052,EFR32MG1P2X,SI3054,SI5216X,SI3056,SI510X,SI534X,SI401X,ZGM,MGM13SX,SI5364,SI5365,SL28PCIE2,SI5368,SI31XX,SI535X,SI5369,SI5366,SI5213X,SI5367,SI5334X,SI402X,SI511X,EFR32MG2X,SI850X,EFM32PG2,EFM32WG,SI5311X,EFM32G3X,SI5013,EFR32BG2X,SI5010,SI88XX,SD35X,SI306X,SI403X,SL28DB,SI2161-X,SI5214X,SI5335X,SI512X,EFM32PG1,SI851X,SL281XX,TSM92XX,SI3219X,SL28PCIE10,CP240X,IAP93X,SI705X-A20,SI2151,SI2150,SI2153,SI3000,SI2155,BGM13S3X,SI2157,SI117X,SI2156,SI2159,SI3006,SL28PCIE19,SI2158,SI3005,SI347X,SI432X,SI892X,SI3008,SI3007,EM26X,SI3009,SL28PCIE16,EFR32MG1B1X,SI5386X,SL28PCIE14,SI3218X,CY2815,SI3011,SI3010,SI3012,SI118X,SI3015,SI348X,SI106X,SI3014,SI324X,SI3017,SI433X,SI5317,SI3016,SI3019,SI3018,SI445X,SI5316,EFR32MG1B2X,BGM13S22FX,EM25X,SI5319,IAP91X,TSM91XX,CP250X,EFM32TG8X,SI2171,SI2170,SI2173,SI2172,SI2177,SI2176,SI2178,SI446X,SI5315X-A,SI5388X,SI5315X-C,TS3300,SI3402X,SI2180,SI2182,SI705X-A10,SI2181,SI5409X,SI2183,SI2185,SI108X,SI302X,SI435X,SL28PCIE06,EM35X,SI3239X,SI2111,SI2113,C8051F0XX,SI2115,SI476X,SI210X,SI101X,EM34X,SI5221X,TS4XXX,SI2434-D,SI2457-D,TS331X,SI2457-C,IAP86X,EFR32MG12PX,SI3450,SI4780,SI3453,SI3211,SI3452,SI3210,BGX220S2,SI2124,SI3455,SI3454,SI3457,SI3215,SI477X,SI2434-C,SI3456,SI114X,SI2128,SI3459,SI5389X,SI2127,SI102X,SI3216,SI3458,SI320X,SI4732-AXX,SI5220X,SL15300DZC-56,SI3217X,TSM93XX,SI4430,SI2494,SI3220,SI4312,SI4313,SI4310,SI4431,SI4311,SI4432,SI2137,SI115X,SI2136,SI3225,SI35XX,SI4438,SI103X,SI2138,SI3227,SI890X,SI442X,TS11XX,EM31X,SI47XX-D,SI8271-D-IDI,SI2140,SI2141,SI3230,SI2144,SI3233,SI2143,SI3232,SI2146,SI2145,SI2148,SI346X,SI2147,SI46XX,SI3238,SI8271-D-YDI
Si8281/82/83/84 Data Sheet
型号- SI8281BC-AS,SI8284DD-IS,SI8283ED-IS,SI8284ED-AS,SI8284CD-IS,SI8284ED-IS,SI8284CD-AS,SI8281BC-IS,SI8284DD-AS,SI8283ED-AS,SI828XCX,SI8281BD-AS,SI8284BD-AS,SI8282CC-AS,SI8282BC-IS,SI8282ED-AS,SI8283EC-IS,SI8282DD-IS,SI8282DD-AS,SI8283EC-AS,SI828X,SI8281BD-IS,SI8284BD-IS,SI8282CC-IS,SI8282BC-AS,SI8282ED-IS,SI828XDX,SI8284BC-AS,SI8282BD-IS,SI8282CD-AS,SI8282EC-AS,SI8281DD-AS,SI8283CC-IS,SI828X FAMILY,SI8281ED-AS,SI8282DC-IS,SI8283DC-AS,SI8283BD-AS,SI8281CD-IS,SI8281ED-IS,SI8282DC-AS,SI8283DC-IS,SI8283BD-IS,SI8281CD-AS,SI828XEX,SI8284BC-IS,SI8282BD-AS,SI8282CD-IS,SI8282EC-IS,SI8281DD-IS,SI8283CC-AS,SI8284DC-IS,SI8281EC-AS,SI8281DC-AS,SI8283CD-IS,SI8284,SI8284EC-AS,SI828XD,SI828XE,SI8284CC-IS,SI828XB,SI8281CC-IS,SI8281,SI828XC,SI8282,SI8281EC-IS,SI8283BC-AS,SI8283DD-AS,SI8283,SI8284EC-IS,SI8284CC-AS,SI8281CC-AS,SI8283BC-IS,SI8283DD-IS,SI8284DC-AS,SI828XBX,SI8281DC-IS,SI8283CD-AS
Silicon Labs(芯科科技)电源产品/定时器/IoT产品介绍
描述- 2020 April Sales Training Slides
型号- SI547,SI8422BB,SI545,SI546,SI549,XG12,XG21B,SI533XX,SI5383,XG21A,SI5342,SI5384,SI5341,SI536X,SI5347,SI5388,SI5389,SI532X,SI5348,EFR32FG22,CK440,EFR32BG22,SI5508,EFR32,SI5332-GM,SI534XH,SI5350,SI53471,SI53472,SI5392,SI5397,SI41XX,SI5351,SI828X,SI5357,SI537X,SI561,SI347X,SI562,SI560,SI565,SI566,SI5518,SI564,SI569,SI54X,XG1X,SI567,SI532XX,EFR32XG21B,SI823HX,SI538X,SI893X,BG22,SI534X,BGM220S,BGM220P,BGM220,SI51X,EFR32MG22,SI34071,SI522XX,SI834X,SI8920,SI5332,SI539X,SI88XX,SI8921,SI8922,SI5330,SI5335,SI8252X,SI3474,XG22,SI531X,XG21,SI540,SI5338,SI842X,SI830X,EFP01,SI894X,DB2000
【经验】基于隔离器检测功能脚DSAT的误报警延时检测网络
Silicon Labs推出的Si828x隔离栅极驱动器是专为保护电源逆变器以及绝缘栅双极晶体管等器件而设计的,它具有5KVrms的隔离等级以及良好的定时特性和业内最快的趋饱和检测功能。
设计经验 发布时间 : 2019-07-04
UG484: Si828x-HB-EVB User’s Guide
型号- 1825AC103KAT1A,CR0805-10W-1001F,STPS140Z,RB160MM-30TF,LCR1210-R100F,CR1210-4W-000,1825AC104KAT1A,151-201-RC,CRCW20103R00FKEFHP,ERJ-3EKF1503V,RC0603FR-072K2L,ZXTN2010Z,C1210X7R250-226M,MBR0580S1,CR0603-16W-8661F,CR0603-10W-1000F,CR2512-2W-10R0FT-W,ERA-8AEB2493V,CR0603-16W-1000F,CR0805-10W-1000F,CR1206-4W-20R0FT,RC0805FR-0730RL,RC1206FR-07221KL,C1210X7R250-106M,MKP1848S61010JY2B,ZXTP2012Z,CR0603-10W-4701F,CR1206-4W-1R0J,C0805X7R101-473K,151-203-RC,LT4430ES6#TRMPBF,PVG3A202C01R00,UTB02286S,C0805X7R250-225M,SI8284,CR0805-10W-2003F,SI8285,CRGCQ0805F330K,C1206X7R100-106M,SI8281,PMBT2907A,C0402X7R500-222K,ERJ-3EKF2493V,142-0701-201,CR0805-8W-1001F,SDN-414-01,C0603X7R250-104K,SI828XTE_SIC-HV PCB,C0603X7R250-104M,LTST-C170KRKT,C0603C271K5RACTU,1729131,1N4148W,C0402X7R100-104K,TSW-102-07-T-S,8174,C0805X7R201-471M,RNCP0805FTD499R,CR0805-10W-222J,CR1206-4W-1R00F,CR0805-10W-000,TSW-103-07-T-S,EVQ-PAD04M,LTST-C170GKT,SMAZ24-13-F,CR1206-8W-1004F,151-205-RC,CR0805-8W-1002F,MBR1H100SF,SI8285CD-A-IS,CR0603-16W-3302F,C0805X5R160-475K,CRGCQ0805F22K,SI828X,C3M0016120D,CD74AC04M,C0805C0G500-105F,NLCV32T-100K-PF,C3M0016120K,ERA-6AEB3161V,PS2911-1,CC0603KPX7R9BB104,C1210X7R500-106M,BU-5200-A-4-0,C40-058-VE,SI8281CD-IS,SI828X-HB-EVB,TPS40200,CR0402-16W-103J,ZXTP2027FTA,CR1206-4W-10R0F,C0805C0G250-223J,C0603X7R101-102K,US1K-13-F,CR0603-16W-1002F,SN74HC00DR,C0603C0G500-100D,132136-12,CR1206-4W-4R02F
在IGBT驱动项目中,可以替换PC929的驱动器是哪个型号?
可以推荐Si8286,该隔离器件是采用电容隔离技术,如果Si8286被烧掉后,Si8286呈现是开路状态,同时支持4A的驱动电流,远远超过PC929电流。
技术问答 发布时间 : 2017-05-05
Silicon Labs(芯科科技) Si8285/Si8286高电流栅极驱动器官方数据手册
描述- 本资料描述Si8285/Si8286高电流栅极驱动器只要应用于工业市场和汽车市场。
型号- SI8285CD-ISR,SI8286CC-IS,SI8285CC-ASR,SI8286BC-ISR,SI828XCD,SI8286CD-AS,SI8285BD-IS,SI8286BD-ISR,SI8285CD-ASR,SI8285CD-AS,SI8286BD-IS,SI8285CD-IS,SI8286CD-IS,SI8286CD-ISR,SI8286CC-ISR,SI8285,SI828XBD,SI8286,SI8286CC-ASR,SI8286CC-AS,SI8285BC-IS,SI8285BC-ISR,SI8285CC-ISR,SI828X,SI8286BC-IS,SI8285CC-AS,SI8286CD-ASR,SI8285BD-ISR,SI8285CC-IS
Test Report: Driving Cree® C3M™SiC MOSFETs with Silicon Labs® Si828x Gate Drivers in applications requiring short-circuit protection
型号- SI828X,SI8285,C3M0065100K,C3M00651000K,SI8281CC-IS,C3M0016120K,SI8281,SI8285CC-IS
新型IGBT智能门极驱动的好帮手
采用智能门极驱动Si8286为核心的IGBT驱动电路,可以实现优越的工作性能,弥补常用IGBT驱动模块的不足。
新应用 发布时间 : 2019-09-04
AN1009: Driving MOSFET and IGBT Switches Using the Si828x
型号- SI828X,SI8284,SI8285,SI8286,SI8285A,SI8287,SI8285B,SI8281
AN1306: Driving SiC MOSFET Switches Using the Si828x Isolated Gate Driver
型号- SI828X,SI828X FAMILY,SI8284,SI8281,SI8282,SI8283
【选型】速度快、寿命长的隔离器件一网打尽,完美替代光耦合器
Silicon Labs推出的隔离产品是技术领先的电容隔离器件,它提供了工业类最好的隔离技术,产品具有高品质、高可靠性和全球范围内的安全认证。由于它具有体积小、寿命长、抗干扰能力强,传输速度快等优点,因此被广泛用于工业、计算机、消费、通讯类、医疗、军事和航空市场中。
原厂动态 发布时间 : 2016-11-20
隔离IGBT驱动芯片Si828X集成了DC-DC转换器,请问该DC-DC转换器能够提供多大输出功率?
隔离IGBT驱动芯片Si828X集成的DC-DC转换器最大可以提供2W的输出功率。
技术问答 发布时间 : 2017-05-05
【技术】隔离放大器+多功能栅极驱动器 实现变频器IGBT保护
Silicon Labs公司的隔离放大器提供了保护IGBT免于遭受过电流、过载和过电压情况的有效方法。使用Si8920隔离放大器搭配功能多样的栅极驱动器,如Si828x可以实现高成本效益的充分IGBT保护方案。
技术探讨 发布时间 : 2016-11-17
电子商城
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥8.1764
现货: 104,128
品牌:SILICON LABS
品类:Mighty Gecko Multi-Protocol Wireless SoC
价格:¥27.0929
现货: 90,767
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥10.4994
现货: 61,779
现货市场
品牌:SILICON LABS
品类:Switch Hall Effect Magnetic Position Sensor
价格:¥2.2924
现货:126,000
登录 | 立即注册
提交评论